تعیین شاخص تراکم خاک‌های رسی با استفاده از سیستم استنتاج فازی-عصبی انطباقی

نویسندگان
1 دانشجو دکترا - دانشگاه صنعتی شیراز
2 دانشجو دکترا
3 هیئت علمی دانشگاه صنعتی شیراز
چکیده
احداث ساختمان‌ها و سازه‌های مختلف، باعث به هم فشرده شدن ذرات خاک و درنتیجه نشست خاک می‌گردند. یکی از روش‌های محاسبه میزان نشست، استفاده از شاخص تراکم خاک (Cc) حاصل از نتایج آزمایش تحکیم در خاک‌های رسی می‌باشد که انجام این آزمایش نسبتاً زمان‌بر و پرهزینه است. در این خصوص برخی محققان، روابط نیمه تجربی مختلفی ارائه نمودند که این روابط نیز به‌صورت تک پارامتری مقدار Cc را تعیین می‌نمایند. با توجه به اینکه Cc رابطه‌ای غیرخطی با پارامترهای مربوطه دارد و این‌گونه مسائل غیرخطی و مواردی که نیاز به درک دقیق مسئله‌دارند را می‌توان با استفاده از سیستم استنتاج فازی-عصبی انطباقی (ANFIS) پیش‌بینی نمود. در این مقاله به‌منظور پیش‌بینی Cc، دو مدل ANFIS ارائه گردیده است که در ایجاد این دو مدل از خوشه‌بندی کاهشی (SC) و خوشه‌بندی Fuzzy c-means (FCM) استفاده‌شده است. پارامترهای ورودی این مدل‌ها، مشابه با پارامترهایی می‌باشند که در اکثر روابط نیمه تجربی ارائه‌شده برای Cc به‌کاربرده شده است؛ این پارامترها شامل نسبت تخلخل اولیه (e0)، حد روانی (LL) و حد خمیری (PL) می‌باشند که در آزمایشگاه به‌راحتی قابل‌تعیین هستند. نتایج به‌دست‌آمده نشان دادند که هر دو مدل ANFIS دارای قابلیت بالایی برای پیش‌بینی Cc با ورودی‌های انتخابی بوده و همچنین توانسته‌اند پیش‌بینی نسبتاً مناسب و قابل قبولی را ارائه دهند.

کلیدواژه‌ها


عنوان مقاله English

Determination of clayey soil compression index (Cc) using adaptive neuro-fuzzy inference system

نویسندگان English

Mehdi Hashemi Jokar 1
sohrab mirasi 2
Hossein Rahnema 3
1 phd. candidate
چکیده English

Construction of buildings and structures causes to compact of soil particles and soil settlement. Hence, determination and prediction of soil settlement in the stability of structures, resulting from the applied loads, is necessary before construction. As a result of consolidation test that is relatively time-consuming and costly testing, compression index (Cc) is used to get the amount of settlement. In fact, soil settlement can cause extensive damage to a project in some cases. In order To prevent these damages, correct prediction can be useful for safe designing of structures. Cc may be as a function of various parameters such as initial void ratio of soil, moisture of liquid limit, moisture of plastic limit, plasticity index, relative density, and so on. By considering the longtime of consolidation test, researchers have tried to find relationship between these parameters and Cc from the past until now. For this reason they tried to connect Cc to other physical measurable properties of the soil.

In the past, some researchers have indirectly tried to measure these parameters. In this regard, several empirical single-parameter approaches are proposed to estimate Cc. Due to non-linear relationship between Cc and relevant parameters, Adaptive Neuro-Fuzzy Inference System (ANFIS) has found as an application to solve such non-linear problems and cases where an accurate understanding of the problem is required. ANFIS is a multilayer feed forward networks that is combination of Fuzzy Inference System (FIS) and Neural Network (NN). NN has ability to learn the input and output data and FIS is also capable for map the input space to the output space. ANFIS is a powerful tool to solve complex and nonlinear problems using the two mentioned features and also language power of FIS and numerical power of adaptive nervous system.

In this paper, Compression index (Cc) is modeled by ANFIS. Two ANFIS model were created by subtractive clustering (SC) and Fuzzy c-means clustering (FCM), respectively, and then trained. By data clustering, collection of training data is divided into a number of fuzzy clusters and each cluster representing the system behavior. The data were collected from the Soil Mechanics Laboratory of Mashhad city. ANFIS input parameters are taken according to the same parameters that commonly chosen in most of empirical models for determining Cc that easily determined in the laboratory. These input parameters include initial void ratio (e0), liquid limit (LL) and plastic limit (PL).
The number of required iterations for training (Epochs) in two ANFIS model, neighborhood radius (ra) in SC and number of clusters (NC) in FCM are optimized using trial and error method. After the end of solving and optimization of ANFIS models, the SC-FIS model was found in ra = 0.25 and NC =18 and the FCM-FIS model was obtained in NC = 20 with highest accuracy for prediction. Results showed both ANFIS model have a high capacity and appropriate forecasting for Cc prediction with chosen inputs parameters. Compared to the SC-FIS model, FCM-FIS is conducted prediction with higher accuracy. Using presented ANFIS models, can be predict the Cc of soils whose characteristics are within the specifications soils that used in this modeling with high accuracy and do not need to conduct consolidation tests that are very time consuming and costly.

کلیدواژه‌ها English

ANFIS
compression index
Prediction
Subtractive clustering
Fuzzy c-means clustering
Adaptive Neuro-Fuzzy Inference System
  1.  Ahadian, J.,. Jalal, R.A., and Bajestan M.Sh., Determination of compression index, soils Ahvaz region. Technical Journal of Tabriz Faculty, 1394. 35 (In Persian).


 Behnia, k. and Tabatabai, A., soil mechanics. fir