ارزیابی ماکزیمم مطلق پاسخ دینامیکی تیر تک دهانه تحت اثر حرکت شتابدار جسم متحرک

نویسندگان
1 عضو هیات علمی دانشگاه ازاد اسلامی واحد رشت
2 دانشجو کارشناسی ارشد، گروه مهندسی عمران، واحد نور، دانشگاه آزاد اسلامی، نور، ایران
چکیده
امروزه جرم، سرعت و شتاب وسایط نقلیه افزایش چشمیگیری یافته، به طوری که باز نگری های متعددی برروی تنش ها و کرنش های دینامیکی محاسبه شده در پل ها با روش های قدیمی تحلیل استاتیکی و تحلیل به روش نیروی متحرک صورت پذیرفته است. محققین بسیاری برای حصول دقت بالاتر تطابق مدل فیزیکی و محاسباتی، روش جرم را به کار بسته اند. در مدل جرم متحرک، اثرات اندرکنش بین جرم و سازه وارد مدل محاسباتی می شود که این باعث افزایش دقت و البته افزایش پیچیدگی محاسباتی برای تحلیل این مدل می گردد. لذا در چند سال اخیر، پژوهشگران متعددی این مساله را با در نظر گرفتن ارتعاش تیر نازک تحت اثر جرم متحرک معادل سازی نموده و به مطالعه پارامتری بر روی حداکثر پاسخ دینامیکی تیر پرداخته اند. به طور معمول در سازه های تیر شکل به منظور بررسی حداکثر مقدار پاسخ دینامیکی سازه تحت اثر بارهای متحرک، نقطه وسط دهانه به عنوان نقطه مرجع در نظر گرفته می شود. این درحالی است که لزوماً محل رخداد مقدار ماکزیمم پاسخ دینامیکی در وسط دهانه نمی باشد. لذا در این پژوهش، ارتعاش یک تیر یک دهانه در اثر عبور جرم متحرک با درنظر داشتن نسبت های مختلف جرم و در طیف وسیعی از نسبت های سرعت تحلیل می گردد. ماکزیمم مطلق پاسخ دینامیکی تیر تحت اثر عبور جسم متحرک شتابدار مورد برررسی گسترده قرار گرفته است. نتایج نشان می دهند که حداکثر مطلق پاسخ دینامیکی تیر می تواند تفاوت شایان توجهی نسبت به وسط دهانه تیر داشته باشد.

کلیدواژه‌ها


عنوان مقاله English

Assessing absolute maximum dynamic response of a single span beam acted upon by an accelerated moving object

نویسندگان English

iman m.nikbin 1
Shima Javadi 2
1 Assistant Professor, Islamic Azad University, Rasht Branch.
2 MSc Student, Civil Eng. Dept., Noor Branch, Islamic Azad University, Noor, Iran.
چکیده English

In structural dynamics, loads having varying positions has been broadly studied. Such loads are so called moving loads which appears in various applications in industry. High speed machining systems, overhead cranes, cable ways, pavements, computer disc memories and robot arms are a few examples of moving load dynamic problems. Vibration of bridge structures subject to moving vehicles is often referred to as an application of moving load problems. A great number of researchers proposed numerical and analytical methods to deal with the vibration of solids and structures under travelling loads. A famous classic approach in the simulation of moving loads is the moving force. In moving force model, a constant traveling force is assumed to act upon the base structure. However, this assumption yields to reasonable structural analysis if the mass of the moving object is negligible. Nowadays, with ongoing advances of transportation technology, the mass, speed and acceleration of moving vehicles are notably increased. In this regard, during the last few decades, many researchers showed that the moving force is no longer valid for large moving masses. Therefore, the moving mass simulation has been proved to be closer to the physical model of vehicle bridge interaction. As a common practice, bridges carrying moving vehicles has been assumed as vibrating beams excited by point moving masses. It has been very customary to consider the midspan or center point of the base beam as the reference point in order to assess the maximum dynamic response of the structure under moving mass; therefore, most of the existing computed design envelopes are related to the values occurring at the midpoint of the structure. However, the location of the maximum values occurrence is not necessarily at midspan. To shed light on this issue, in this research an analytical-numerical method is established to capture dynamic response of an Euler-Bernoulli beam traversed by a moving mass. Most of the available literature on moving load problem is concerned with the travelling loads having constant speeds. To remove this restrictive presumption, in this paper, the considered moving mass is assumed to move at non-zero constant acceleration. The beam is considered to be undamped and initially at rest. The moving mass is assumed to maintain full contact condition with the base beam while sliding on it. By exploiting a series of continuous shape functions having time varying amplitude factors, a norm space is provided by which the beam spatial domain is discretized. The problem is then transformed into time domain for which a time integration method is utilized. Absolute maximum dynamic response of the supporting beam under the passage of accelerated moving mass is extensively sought over the beam length. In this manner, whole beam length is being monitored for the maximum values at each time step of time integration procedure. The beam absolute maximum dynamic response is comprehensively computed considering different mass ratios and extensive range of linearly time varying velocities. Parametric studies are carried out on the absolute maximum values of dynamic flexural moments and deflections and compared to those captured at midspan. Finally, it highlighted that the midspan of the beam cannot be a valid reference to obtain the true maximum deflections and flexural moments of the base beam.

کلیدواژه‌ها English

Moving mass
Euler-Bernoulli beam
dynamic response
normalized maximum dynamic response
[1] Willis, R.; The effect produced by causing weights to travel over elastic bars. Report of the commissioners appointed to inquire into the application of iron to railway Structures; Appendix B, London, England, Stationery office, (1849).
[2] Stokes, G.; Discussion of a differential equation relating to a breaking of railway Bridges, Transactions of the Cambridge Philosophical Society; 8, 707, (1896).
[3] Frýba, L.; Vibration of Solids and Structures under Moving Loads; London, Thomas Telford, (1999).
[4] Timoshenko, S.P.; "Vibration of bridges, Transactions of the American Society of Mechanical Engineers". 49, (1928), 53-61.
[5] Ouyang, H; "Moving-load dynamic problems: a tutorial (with a brief overview)"; Mech. Syst. Signal Process; 25, (2011), 2039–2060.
[6] Ahmadi, M., Nikkhoo, A.; "Utilization of characteristic polynomials in vibration analysis of non-uniform beams under a moving mass excitation"; Applied Mathematical Modelling; 38, (2014), 2130-2140. (In Persian)
[7] Ebrahimzadeh Hassanabadi, M., Nikkhoo, A., Vaseghi Amiri, J., Mehri, B.; "A new Orthonormal Polynomial Series Expansion Method in vibration analysis of thin beams with non-uniform thickness"; Applied Mathematical Modelling; 37, (2013), 8543-8556. (In Persian)
[8] Ding, H., Chen, L-Q., Yang, S-P.; "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load"; Journal of Sound and Vibration; 331, (2012), 2426–2442.
[9] Mofid, M., Tehranchi, A., Ostadhossein, A; "On the viscoelastic beam subjected to moving mass"; Advances in Engineering Software; 41, (2010), 240-247. (In Persian)
[10] Ebrahimi, M., Gholampour, S., Jafarian Kafshgarkolaei, H., Mohammadpour Nikbin, I; "Dynamic behavior of a multispan continuous beam traversed by a moving oscillator"; Acta Mechanica; 226(12), (2015), 4247-4257. (In Persian)
[11] Nikkhoo, A., Farazandeh, A., Hassanabadi, M.E.,Mariani, S.; "Simplified modeling of beam vibrations induced by a moving mass by regression analysis"; Acta Mechanica; 226(7), (2015), 2147–2157. (In Persian)
[12] Simsek, M., Kocatürk, T., Akbas, S.D.; "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load"; Composite Structures; 94, (2012), 2358-2364.
[13] Wang, Y.M., Ming-Yuan, K.; "The interaction dynamics of a vehicle traveling along a simply supported beam under variable velocity condition”; Acta Mech; 225(12), (2014), 3601–3616.
[14] Rajabi, K., Kargarnovin, M.H., Gharini, M.; "Dynamic analysis of a functionally graded simply supported Euler–Bernoulli beam subjected to a moving oscillator"; Acta Mech; 224(2), (2013), 425–446. (In Persian)
[15] Nikkhoo, A., Farazandeh, A., Hassanabadi, M.E.; "On the computation of moving mass/beam interaction utilizing a semianalytical method"; J. Braz. Soc. Mech. Sci. Eng; (2014). doi:10.1007/s40430-014-0277-1(In Persian)
[16] Mamandi, A., Kargarnovin, M.H.; "Dynamic analysis of an inclined Timoshenko beam traveled by successive moving masses/forces with inclusion of geometric nonlinearities"; Acta Mech; 218(1-2), (2011), 9–29. (In Persian)
[17] Pirmoradian, M., Keshmiri, M., Karimpour, H.; "On the parametric excitation of a Timoshenko beam due to intermittent passage of moving masses: instability and resonance analysis"; Acta Mech; 226(4), (2015), 1241–1253. (In Persian)
[18] Roshandel, D., Mofid, M., Ghannadiasl, A.; "Dynamic response of a non-uniform Timoshenko beam, subjected to moving mass"; Journal of Mechanical Engineering Science; (2014). doi: 10.1177/0954406214561049  (In Persian)
[19] Roshandel, D., Mofid, M., Ghannadiasl, A.; "Modal analysis of the dynamic response of Timoshenko beam under moving mass"; Scientia Iranica A; 22(2), (2015), 331-344. (In Persian)
[20] Kiani, K., Ghomi Avili, H., Noori Kojorian, A.; "On the role of shear deformation in dynamic behavior of a fully saturated poroelastic beam traversed by a moving load"; International Journal of Mechanical Sciences; 94-95, (2015), 84-95. (In Persian)
[21] Kargarnovin, M.H., Jafari-Talookolaei, R.A., Ahmadian, M.T.; "Vibration Analysis of Delaminated Timoshenko Beams under the Motion of a Constant Amplitude Point Force Traveling with Uniform Velocity"; International Journal of Mechanical Sciences; 70, (2013), 39-49. (In Persian)
[22] Nguyen, K.V.; "Comparison studies of open and breathing crack detections of a beam-like bridge subjected to a moving vehicle"; Engineering Structures; 51, (2013), 306-314.
[23] Hassanabadi, M.E, Attari, N.K.A., Nikkhoo, A., Baranadan, M.; "An optimum modal superposition approach in the computation of moving mass induced vibrations of a distributed parameter system"; Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science; 229(6), (2015), 1015-1028. (In Persian)
[24] Hassanabadi, M.E, Vaseghi Amiri, J., Davoodi, M.R.; "On the vibration of a thin rectangular plate carrying a moving oscillator"; Scientia Iranica, Transaction A: Civil Engineering;21(2), (2014), 284-294. (In Persian)
[25] Enshaeian, A., Rofooei, F.R.; "Geometrically nonlinear rectangular simply supported plates subjected to amovingmass"; Acta Mech; 225(2), (2014), 595–608. (In Persian)
[26] Amiri, J.V., Nikkhoo, A., Davoodi, M.R., Hassanabadi, M.E.; "Vibration analysis of a Mindlin elastic plate under a moving mass excitation by eigenfunction expansion method"; Thin-Walled Struct; 62, (2013), 53–64. (In Persian)
[27] Martı´nez-Rodrigo, M.D., Museros, P.; "Optimal design of passive viscous dampers for controlling the resonant response of orthotropic plates under high-speed moving loads"; Journal of Sound and Vibration; 330, (2011), 1328-1351.
[28] Uzal, E., Sakman, L.E.; "Dynamic response of a circular plate to a moving load"; Acta Mechanica; 210, (2010), 351-359.
[29] Nikkhoo, A., Hassanabadi, M.E., Azam, S.E., Amiri, J.V.; "Vibration of a thin rectangular plate subjected to series of moving inertial loads"; Mech. Res. Commun: 55, (2014), 105–113. (In Persian)
[30] Clough, R.W., Penzien, J.: Dynamics of structures, Third Edition. Computers & Structures Inc., Berkeley, CA (2003)