بررسی اثر فرم توابع نیروهای گرهی بر پاسخ مسائل الاستواستاتیک در روش نیمه تحلیلی معادلات مجزا

نویسنده
دانشگاه صنعتی کرمانشاه
چکیده
یکی از پرکاربردترین مسائل مربوط به مهندسی در مکانیک جامدات، مسائل الاستواستاتیک است. بسیاری از مسائل الاستواستاتیک به‌صورت تحلیلی قابل حل نیستند؛ از این‌رو، حل این مسائل با روش‌های عددی به یکی از مسائل مهم تبدیل گشته است. مقاله حاضر به بررسی یک روش جدید به‌نام روش معادلات مجزا در مسائل الاستواستاتیک می‌پردازد. روش معادلات مجزا یک روش نیمه‌تحلیلی با ماتریس ضرایب قطری است. در این روش، تنها مرز مسئله با استفاده از توابع شکل مرتبه بالا و توابع نگاشت چبیشفی گسسته‌سازی می‌گردد. در این روش، با استفاده از روش باقیمانده‌های وزن‌دار و روش انتگرالی کلینشا-کورتیز، معادلات دیفرانسیل اویلری به‌صورت مجزا ایجاد می‌گردند و در ادامه با تعریف بردار نیروهای گره‌ای، فرایند حل با استفاده از مفهوم بازتوزیع تنش صورت می‌گیرد. در مقاله حاضر با تعریف فرم‌های جدیدی از بردار نیروهای گره‌ای، معادله دیفرانسیل حاکم بر مسئله الاستواستاتیک استخراج می‌گردد و در نهایت، با حل دو مثال عددی، روش معادلات مجزا در برابر فرم توزیع تنش در فضای مسئله مورد حساسیت‌سنجی قرار گرفته است. نتایج نشان می‌دهد که در روش معادلات مجزا پاسخ مسائل الاستواستاتیک کاملاً وابسته به فرم توابع جدید بردار نیروهای گره‌ای می‌باشد و بسته به نوع مسئله، در هر مسئله یک فرم خاص از بردار نیروهای گره‌ای دارای دقت بهینه است.

کلیدواژه‌ها


عنوان مقاله English

Sensitive Analysis of Nodal Force Function in the Elastostatic Problems in Decoupled Equations Method

نویسنده English

mahdi yazdani
چکیده English

The elastostatic problems are a significant subject in the analysis and design of solids and structures. As most of the complicated elastostatic problems do not have closed-form solutions, numerical methods such as finite element method (FEM), boundary element method (BEM), discrete element method (DEM), meshless methods, scaled boundary finite element method (SBFEM), and hybrid methods are the current approaches dealing with these types of engineering problems. This study presents a novel application of the decoupled equations method (DEM) to assessment elastostatic issues. In the present method, the so-called local coordinate's origin (LCO) is selected at a point, from which the entire domain boundary may be observed. For the bounded domains, the LCO may be chosen on the boundary or inside the domain. Furthermore, only the boundaries which are visible from the LCO need to be discretized, while other remaining boundaries passing through the LCO are not required to be discretized. In this method, only the boundaries of problems are discretized using specific higher-order sub-parametric elements and higher-order Chebyshev mapping functions. Implementing the weighted residual method and using Clenshaw-Curtis quadrature result in diagonal Euler’s differential equations. So, the coefficient matrices are diagonal, which provide a system of single Euler’s differential equations for the ith degree of freedom (DOF). If n indicates the number of DOFs of the problem assumed to be analyzed by the proposed method, only n Euler’s differential equations (with only one unknown differential equation for each DOF) should be solved. In the proposed method, the LCO is the same for all nodes, for which the LCO has the same displacement components. Therefore, the physical concept of this fact may be considered as some semi-parallel springs adjoining to each other at the LCO. Therefore, the proposed procedure is called “redistribution” of the stresses in the present method. At the final step, using the calculated displacement field along ξ, the displacement at any point of the problem’s domain is interpolated by using the proposed special shape functions. Although the governing equation of each DOF is decoupled from those of other DOFs, however the “redistribution” of the stresses at the LCO and resolving the problem for each DOF, represents the connection between all DOFs of the domain. In the solution procedure, the order of displacement function u(ξ) depends on nodal force function F^b (ξ). To analysis of elastostatic problems in the classical Decoupled Equations Method, F^b (ξ) varies in the undertaken domain like a body force. Therefore, F^b (ξ) is defined as a linear function. In this study by proposing new forms of force function, the response of elastostatic problems is assessed. In the following Sensitivity of this method via proposed nodal force functions is fully demonstrated through two benchmark problems. The results show that stress and displacement fields totally depend on the form of force function. Also, the results show to get optimum results, proposing an appropriate nodal force function corresponding to physical concept is necessary. For example in the cantilever beam which is subjected to a shear force at its free end, by considering the linear form for nodal force function results in minimum error. In the other hands, in the Kirsch’s problem with a central small circular hole, considering the nonlinear form for nodal force function leads to minimum error.

کلیدواژه‌ها English

Decoupled equations method (DEM)
elastostatic problems
redistribution stress
nodal force function
2D Problems
[1] Zienkiewicz O.C. & Taylor R.L. 2000 The Finite Element Method, Oxford, 2nd edn,  Butterworth and Heinmann.
[2] Rashid M.M. & Selimotic M. A. 2006 three-dimensional finite element method with arbitrary polyhedral elements. Int. J. Numer. Meth. Engng, 67, 226–252.
[3] Denda M. & Wang C.Y. 2009 3D BEM for the general piezoelectric solids. Comput. Methods Appl. Mech. Engrg, 198, 2950–2963.
[4] Papanicolopulos S.A., Zervos A. & Vardoulakis I. 2009 A three-dimensional C1 finite element for gradient elasticity. Int. J. Numer. Meth. Engng, 77, 1396–1415.
[5] Zhang X. 2003 Exact integration in the boundary element method for two-dimensional elastostatic problems. Earthquake engineering and engineering vibration, 27, 987–997.
[6] Turteltaub S. & Turteltaub M. 2004 Integral representations in elastostatics and their application to an alternative boundary element method. Int. J. Numer. Meth. Eng, 60, 1339–1359.
[7] Zhang X. 2004 Exact integrations of two-dimensional high-order discontinuous boundary elements of elastostatics problems. Eng. Anal. Bound. Elem, 28, 725–732.
[8] Zhang X. 2004 Exact integration for stress evaluation in the boundary element analysis of two-dimensional elastostatics. Eng. Anal. Bound. Elem, 28, 97–1004.
[9] Vodicka R., Mantic V. & Paris F. 2006 On the removal of the non-uniqueness in the solution of elastostatic problems by symmetric Galerkin BEM. Int. J. Numer. Meth, Eng, 66, 1884–1912.
[10] Wu T.W. 1997 Boundary integral equations in three-dimensional elastostatics using the Boussinesq-Cerruti fundamental solution. Engineering Analysis with Boundary Elements, 8(2), 94-102.
[11] Milroy J., Hinduja S. & Davey K. 1997 The elastostatic three-dimensional boundary element method: analytical integration for linear isoparametric triangular elements. Applied Mathematical Modelling, 21, 763-782.
[12] Poullikkas A., Karageorghis A. & Georgiou G. 2002 The method of fundamental solutions for three-dimensional elastostatics problems. Computers and Structures, 80, 365–370.
[13] Masters N. & Ye W. 2004 Fast BEM solution for coupled 3D electrostatic and linear elastic problems. Engineering Analysis with Boundary Elements, 28, 1175–1186.
[14] Kitipornchai S., Liew K.M. & Cheng Y. 2005 A boundary element-free method (BEFM) for three-dimensional elasticity problems. Comput Mech, 36, 13–20.
[15] Wolf J.P. 2004 The scaled Boundary finite element method. John Wiley & Sons Ltd, 1st edn.
[16] Deeks A.J. & Wolf J.P. 2002 A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput. Mech, 28, 489–504.
[17] Vu T.H. & Deeks A.J. 2006 Use of higher-order shape functions in the scaled boundary finite element method. Int. J. Numer. Meth. Eng, 65, 1714–1733.
[18] Vu T.H. & Deeks A.J. 2008 A p-hierarchical adaptive procedure for the scaled boundary finite element method. Int. J. Numer. Meth. Eng, 73, 47–70.
[19] Vu T.H. & Deeks A.J. 2008 A p-adaptive scaled boundary finite element method based on maximization of the error decrease rate. Comput. Mech, 41, 441–455.
[20] Gao X.L. & Rowlands R.E. 2000 Hybrid method for stress analysis of finite three-dimensional elastic components. International Journal of Solids and Structures, 37, 2727-2751.
[21] Kucher V.A. & Markenscoff X. 2004 Stress formulation in 3D elasticity and application to spherically uniform anisotropic solids. International Journal of Solids and Structures, 42, 3611–3617.
[22] Theocarisn P. S., Karayanopoulos N. & Tsamasphyros G. 1983 A numerical method for the solution of static and dynamic three-dimensional elasticity problems. Computers & Structures, 16 (6), 777-78.
[23] Khaji, N. & Khodakarami, M. I. 2011 A new semi-analytical method with diagonal coefficient matrices for potential problems. Engineering Analysis with Boundary Elements, 35(6), 845-854.
[24] Khodakarami, M. I. & Khaji, N. 2011 Analysis of elastostatic problems using a semi-analytical method with diagonal coefficient matrices. Engineering Analysis with Boundary Elements, 35(12), 1288-1296.
[25] Khaji, N. & Khodakarami, M. I. 2012 A semi-analytical method with a system of decoupled ordinary differential equations for three-dimensional elastostatic problems. International Journal of Solids and Structures, 49(18), 2528-2546.
[26] Khodakarami, M. I. Khaji, N. & Ahmadi, M. T. 2012 Modeling transient elastodynamic problems using a novel semi-analytical method yielding decoupled partial differential equations. Computer Methods in Applied Mechanics and Engineering, 213-216(0), 183-195.
[27] Khodakarami, M. I. & Khaji, N. 2014 Wave propagation in semi-infinite media with topographical irregularities using Decoupled Equations Method. Soil Dynamics and Earthquake Engineering, 60, 102-112.
[28] Khaji, N. & Yazdani, M. 2016 Determination of stress intensity factors of 2D fracture mechanics problems through a new semi-analytical method. Fatigue & Fracture of Engineering Materials & Structures, 39(4), 467-478