پیاده‌سازی بهینه روش بدون شبکه توابع پایه نمایی روی بسترهای مختلف نرم‌افزاری و مقایسه کارایی آنها

نویسنده
دانشگاه اصفهان - دانشکده فنی و مهندسی - گروه عمران
چکیده
در دهه‌های اخیر روش‌های بدون شبکه مورد توجه محققان قرار گرفته‌اند. هزینه بالای تولید شبکه المان‌بندی، چه در بعد محاسباتی و چه در بعد نیروی انسانی متخصص یکی از مهم‌ترین دلایل این امر به شمار می‌رود. روش توابع پایه نمایی یکی از این روش‌ها است که در چند سال اخیر جهت حل انواع معادلات دیفرانسیل پاره‌ای در مسائل مختلف علوم مهندسی با موفقیت به کار رفته است. در این مقاله پیاده‌سازی این روش روی بسترهای مختلف نرم‌افزاری مورد بحث قرار گرفته و کارایی نسبی آنها با یکدیگر مقایسه می‌شود. نتایج نشان می‌دهد با پیاده‌سازی مناسب می‌توان خطای ناشی از حل عددی را به شدت کاهش داد. کارایی نسبی انجام حل با استفاده از زبان‌های برنامه‌نویسی معمول مانند C++ در مقایسه با بسته‌های نرم‌افزاری ریاضی همواره یکی از سوالات رایج هنگام استفاده از این بسته‌های نرم‌افزاری است. در این تحقیق نشان داده می‌شود در صورت پیاده‌سازی بهینه روش توابع پایه نمایی این نسبت بین 5/2 تا 6 متغیر است.

کلیدواژه‌ها


عنوان مقاله English

Optimal implementation of exponential basis functions method on different software platforms and performance comparison

نویسنده English

Farshid Mossaiby
University of Isfahan, Department of Civil Engineering
چکیده English

Despite the success and versetality of mesh based methods and the finite element method in particular, there has been a growing demand in last decades towards the development and adoption of methods which eliminate the mesh, i.e. the so called meshless or meshfree methods. The difficulties in generation of high quality meshes, in terms of computational cost, technical problems such as serial nature of the mesh generation process and the urge of parallel processing for today’s huge problems has been the main motivation for researches conducted on this subject. Apart from these, the human expertise required can never be completely omitted from the process. The problem is much more pronounced in 3D problems. To this end, many meshless methods have been developed in recent years where, among others, SPH, EFG, MLPG, RKPM, FPM and RBF-based methods could be named. The exponential basis functions method (EBF) is one of these methods which has been successfully employed in various engineering problems, ranging from heat transfer and various plate theories to classical and non-local elasticity and fluid dynamics. The method uses a linear combination of exponential basis functions to approximate the field variables. It is shown that these functions have very good approximation capabilities and using them guarantees a high convergence rate. These exponential bases are chosen such that they satisfy the homogenous form of the differential equation. This leads to an algebraic characteristic equation in terms of exponents of basis functions. From this point of view, this method may be categorized as an extension to the well-known Trefftz family of methods. These methods rely for their approximation of the field variables on a set of the so called T-complete bases. These bases should satisfy the homogenous form of the governing equation. They have been used with various degrees of success in a wide range of problems. The main drawback of these methods however lies in determination of the bases, which should be found for every problem. This problem has been reduced to the solution of the algebraic characteristic equation in the exponential basis functions method. The method is readily applicable to linear, constant coefficient operators, and has recently been extended to more general cases of variable coefficient linear and also non-linear problems. The relative performance of usual programming languages like C++ to mathematical software packages like Mathematica and/or Matlab is one of the major questions when using such packages to develop new numerical method, as this can affect the interpretation of performance of newly developed methods compared to established ones. In this paper the implementation of the exponential basis functions method on various software platforms has been discussed. We examine C++ and Mathematica programming as a representative of different software platforms. On each platform we implement the exponential basis function method using various options available. The relative performance of these implementations is thoroughly investigated. The results show that with a proper implementation, the numerical error of the method can also be decreased considerably. In this research we show that using optimal implementations of on both platforms, this ratio is between 2.5 and 6.

کلیدواژه‌ها English

Exponential basis function method (EBF)
Pseudo-Inverse
Singular value decomposition (SVD)
Partial differential equations (PDE)
Optimal implementation
[1] Zienkiewicz, O. C., “Achievements and some unsolved problems of the finite element method”, International Journal for Numerical Methods in Engineering, Vol. 47, pp. 9-28, 2000.
[2] Boroomand, B., Soghrati, S. and Movahedian, B., “Exponential basis functions in solution of static and time harmonic elastic problems in a meshless style”, International Journal for Numerical Methods in Engineering, Vol. 81, pp. 971-1018, 2010.
[3] Shahbazi, M., Boroomand, B. and Soghrati, S., “A mesh-free method using exponential basis functions for laminates modeled by CLPT, FSDT and TSDT. Part I: Formulation”, Composite Structures, Vol. 93, pp. 3112-3119, 2011.
[4] Shahbazi, M., Boroomand, B. and Soghrati, S., “A mesh-free method using exponential basis functions for laminates modeled by CLPT, FSDT and TSDT. Part II: Implementation and results”, Composite Structures, Vol. 94, pp. 84-91, 2011.
[5] Shamsaei, B. and Boroomand, B., “Exponential basis functions in solution of laminated structures”, Composite Structures, Vol. 93, pp. 2010-2019, 2011.
[6] Shahbazi, M., Boroomand, B. and Soghrati, S., “On using exponential basis functions for laminates modeled by CLPT, FSDT and TSDT: further tests and results”, Composite Structures, Vol. 94, pp. 2263-2268, 2012.
[7] Zandi, S. M., Boroomand, B. and Soghrati, S., “Exponential basis functions in solution of problems with fully incompressible materials: A mesh-free method”, Journal of Computational Physics, Vol. 231, pp. 7255-7273, 2012.
[8] Zandi, S. M., Boroomand, B. and Soghrati, S., “Exponential basis functions in solution of incompressible fluid problems with moving free surfaces”, Journal of Computational Physics, Vol. 231, pp. 505-527, 2012.
[9] Azhari, F., Boroomand, B. and Shahbazi, M., “Explicit relations for the solution of laminated plates modeled by a higher shear deformation theory: Derivation of exponential basis functions”, International Journal of Mechanical Sciences, Vol. 77, pp. 301-313, 2013.
[10] Azhari, F., Boroomand, B. and Shahbazi, M., “Exponential basis functions in the solution of laminated plates using a higher order ZigZag theory”, Composite Structures, Vol. 105, pp. 398-407, 2013.
[11] Boroomand, B., Azhari, F. and Shahbazi, M., “On definition of clamped conditions in TSDT and FSDT; the use of exponential basis functions in solution of laminated composites”, Composite Structures, Vol. 97, pp. 129-135, 2013.
 
[12] Hashemi, S. H., Boroomand, B. and Movahedian, B., “Exponential basis functions in space and time: A meshless method for 2D time dependent problems”, Journal of Computational Physics, Vol. 241, pp. 526-545, 2013.
[13] Movahedian, B., Boroomand, B. and Soghrati, S., “A Trefftz method in space and time using exponential basis functions: Application to direct and inverse heat conduction problems”, Engineering Analysis with Boundary Elements, Vol. 37, pp. 868-883, 2013.
[14] Movahedian, B. and Boroomand, B., “The solution of direct and inverse transient heat conduction problems with layered materials using exponential basis functions”, International Journal of Thermal Sciences, Vol. 77, pp. 186-198, 2014.
[15] Abdollahi, R. and Boroomand, B., “Nonlocal elasticity defined by Eringens integral model: Introduction of a boundary layer method”, International journal of solids and structures, Vol. 51, pp. 1758-1780, 2014.
[16] Ben-Israel, A., and Greville, T. N. E., Generalized inverses, Springer, 2003.
[17] Linear Algebra Package (LAPACK),
http://netlib.org/lapack.
[18] Basic Linear Algebra Subprograms (BLAS),
http://netlib.org/blas
[19] AMD Core Math Library (ACML),
http://developer.amd.com/tools-and-sdks/cpu-development
[20] Intel Math Kernel Library (MKL),
https://software.intel.com/en-us/intel-mkl
[21] Automatically Tuned Linear Algebra Software (ATLAS), http://netlib.org/atlas
[22] OpenBlas, http://openblas.net