خطاهای محتمل در پیکره ‌بندی میراگر TADAS

نویسندگان
1 معاون آمورشی و تحصیلات تکمیلی دانشکده مهندسی عمران دانشگاه صنعتی خواجه نصیرالدین طوسی
2 دانشگاه خواجه نصیر الدین طوسی
چکیده
میراگرهای الحاقی TADAS نوعی سیستم کنترل غیرفعال می‌باشند که امروزه می‌توان در طراحی لرزه‌ای یا مقاوم‌سازی سازه‌ها از آن‌ها استفاده نمود. در این مطالعه، رفتار میراگر TADAS در تغییرمکان‌های بزرگ مورد بررسی قرار می‌گیرد و بعضی از خطاهای محتمل در طراحی آن که در صورت عدم توجه می‌تواند خساراتی را برای سازه در پی داشته و توانایی اتلاف انرژی میراگر را کاهش دهد، بیان می‌شود. برای تحقیق درباره این موضوع، مدل اجزاء محدود میراگر TADAS با تمام جزئیات در نرم‌افزار آباکوس شبیه‌سازی شد و تحت بارگذاری مونوتونیک منتهی به تغییرمکان‌های بزرگ قرار گرفت. مشخص گردید که سختی میراگر در تغییرمکان‌های بزرگ به صورت ناگهانی افزایش می‌یابد که این افزایش ناگهانی می‌تواند منجر به پاسخ‌های نامطلوب و حتی کمک به تخریب سازه گردد. در این مقاله پیشنهاداتی برای جلوگیری از این وضعیت، ارائه شده است. در ادامه یک قاب مجهز به میراگر TADAS در آزمایشگاه تحت بارگذاری چرخه‌ای تا تغییرمکان‌های بزرگ قرار گرفته است. این قاب همچنین در نرم‌افزار آباکوس نیز شبیه‌سازی گشته و رفتار آن با نمونه آزمایشگاهی مقایسه شده است. از مطالعه مدل‌های آزمایشگاهی و نرم‌افزاری مشخص شد که هرچند رفتار چرخه‌ای میراگر در تغییرشکل‌های بزرگ هم پایدار و مناسب است ولی دو نقص مهم در اجرای این میراگر مشاهده می‌شود. یکی از این نقص‌ها، کمانش بادبندها به دلیل چرخش تکیه‌گاه‌های قاب و دیگری لقی پین‌ها و پیچ‌‌های اتصال میراگر، درون شکاف‌هایشان می‌باشد. نشان داده می‌شود که چگونه این لقی سبب تاخیر در عملکرد میراگر شده و موجب آن می-شود که میراگر در زلزله‌ها نقش کمتری ایفا کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Some probable mistakes in the design of geometric configuration of TADAS damper

نویسندگان English

Reza Karami Mohammadi 1
Arman Nasri 2
چکیده English

Additional dampers TADAS are a kind of passive control systems which can be used in seismic design or retrofit of structures. In this study, behavior of TADAS dampers in large deformation has been examined and some of the possible errors in its design are expressed. It is shown that how the lack of attention can result in damage to the structure and reduce the ability of energy dissipation in the damper. To investigate this issue, TADAS damper with all its details was simulated in ABAQUS finite element software. TADAS damper made up of several components, these components include the upper plate, the lower plate, triangular plates, rods rollers (pins) and connection plates. Damper modeling in ABAQUS determined that in a large deformation, the damper stiffness strongly and suddenly increases. It is examined that this sudden changes in damper characteristics is mainly due to the collision of the damper pin and the upper wall of its slot. This sharp increase could lead to adverse responses and even help to the destruction of the structures. In this paper, two suggestions are presented to prevent this situation. These suggestions include increasing the slot height and putting pins in the lowest point than slot bottom during damper installation. Assuming uniform curvature over the damper plates, a relationship has been proposed to predict the amount of the large displacement corresponding to the high stiffness of the damper. Using this relationship can get awareness of the occurrence or non-occurrence of increasing stiffness of the damper in the various classes of structures. It can also be used as a design tool for selecting the proper height of the damper slots.

Also, a frame equipped with TADAS damper is constructed and get under cyclic loading to large deformation. This frame was simulated in ABAQUS and its behavior was compared with laboratory sample. This comparison indicates that there is a good agreement between laboratory and software results. From laboratory and software models it became clear that the frame equipped with TADAS damper even in large deformation has stable and acceptable behavior, but two very important defects are observed in the frame. One of these defects is buckling of braces despite their design based on the toleration of the maximum capacity of damper. This buckling has occurred due to the rotation of beam-to-column connections. To prevent damper from degradation, it must be considered in the design process as far as the large deformations is concerned. As per the design codes, damper’s retainer system TADAS (Chevron braces) should not be damaged and/or buckled. The second defect is related to the looseness of damper’s pins and the looseness of damper’s connection bolts inside their slots. It will be shown that how this looseness causes a delay in the performance of damper and will increase the possibility that the damper plays a lesser role during earthquake. Therefore, the looseness in pins and bolts must be properly prevented. In this study, 10 bolts with 24 mm diameter were used to the connecting damper to floor-beams and Chevron braces.

کلیدواژه‌ها English

TADAS damper
large deformation
Probable mistakes
Test and simulation
[1] Aiken, I. D., Nims, D. K., Whittaker, A. S., & Kelly, J. M. (1993). Testing of passive energy dissipation systems. Earthquake spectra, 9(3), 335-370.
[2] Spencer Jr, B. F., & Nagarajaiah, S. (2003). State of the art of structural control. Journal of structural engineering, 129(7), 845-856.
[3] Soong, T. T., & Spencer, B. F. (2002). Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243-259.
[4] Kelly, J. M., Skinner, R. I., & Heine, A. J. (1972). Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bulletin of NZ Society for Earthquake Engineering, 5(3), 63-88.
[5] Skinner, R. I., Kelly, J. M., & Heine, A. J. (1974). Hysteretic dampers for earthquake‐resistant structures. Earthquake Engineering & Structural Dynamics, 3(3), 287-296.
[6] Tagawa, H., & Gao, J. (2012). Evaluation of vibration control system with U-dampers based on quasi-linear motion mechanism. Journal of Constructional Steel Research, 70, 213-225.
[7] Kobori, T., Miura, Y., Fukusawa, E., Yamada, T., Arita, T., Takenake, Y., ... & Fukumoto, T. (1992). Development and application of hysteresis steel dampers. In Proceedings of the 10th World Conference on Earthquake Engineering (pp. 2341-2346).
[8] Chan, R. W., & Albermani, F. (2008). Experimental study of steel slit damper for passive energy dissipation. Engineering Structures, 30(4), 1058-1066.
[9] Nakashima, M., Iwai, S., Iwata, M., Takeuchi, T., Konomi, S., Akazawa, T., & Saburi, K. (1994). Energy dissipation behaviour of shear panels made of low yield steel. Earthquake engineering & structural dynamics, 23(12), 1299-1313.
[10] Maleki, S., & Bagheri, S. (2010). Pipe damper, Part I: Experimental and analytical study. Journal of Constructional Steel Research, 66(8), 1088-1095.
[11] Maleki, S., & Bagheri, S. (2010). Pipe damper, Part II: Application to bridges. Journal of Constructional Steel Research, 66(8), 1096-1106.
[12] Maleki, S., & Mahjoubi, S. (2013). Dual-pipe damper. Journal of Constructional Steel Research, 85, 81-91.
[13] Maleki, S., & Mahjoubi, S. (2014). Infilled-pipe damper. Journal of Constructional Steel Research, 98, 45-58.
[14] Bergman, D. M., & Goel, S. C. (1987). Evaluation of cyclic testing of steel-plate devices for added damping and stiffness. Department of Civil Engineering, University of Michigan.
[15] Tsai, K. C., Chen, H. W., Hong, C. P., & Su, Y. F. (1993). Design of steel triangular plate energy absorbers for seismic-resistant construction. Earthquake spectra, 9(3), 505-528.
[16] Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy dissipation systems for seismic applications: current practice and recent developments. Journal of structural engineering, 134(1), 3-21.
[17] Whittaker, A. S., Bertero, V. V., José Luis Alonso G., & Thompson, C. (1989). Earthquake simulator testing of steel plate added damping and stiffness elements (Vol. 89, No. 2). Earthquake Engineering Research Center, University of California at Berkeley.
[18] Tsai, C. S., & Tsai, K. C. (1995). TPEA device as seismic damper for high-rise buildings. Journal of engineering mechanics, 121(10), 1075-1081.
[19] Tsai, K. C., & Li, C. W. (1994, March). Seismic Analysis of Passive Energy Dissipation Subsystems by Hybrid Experiments. In Proceedings of the 12th International Modal Analysis (Vol. 2251, p. 1520).
[20] ABAQUS. 'ABAQUS Documentation'. 6.13-1 ed: Dassault Systèmes; 2013.
 [21] Seismic  rehabilitation  of  existing  buildings (ASCE). ASCE/SEI Standard 41-06 with  supplement  1, American Society of Civil Engineers, Reston, VA.2007.
[22] BHRC, (2015). Road, Housing and Urban Development Research Center, PART SAZE SAINAR engineering Company report on TADAS damper experiments. Report No. 1122- س/ 9 (in Persian).