توسعه روش انتگرال گیری برای شبیه سازی هیبرید در مدل های عددی و آزمایشگاهی

نویسندگان
1 دانشگاه تربیت مدرس
2 دانشجوی دکتری مهندسی زلزله دانشگاه تربیت مدرس
3 استاد یار دانشکده مهندسی عمران - دانشگاه صنعتی شریف
چکیده
روش شبیه سازی هیبرید، ترکیبی از تکنیک‌های مدل‌سازی عددی و آزمایشگاهی است که ضمن موثر و قابل اعتماد بودن، برای بررسی پاسخ دینامیکی سازه-های پیچیده مورد استفاده قرار می گیرد. در این روش پاسخ سازه با انتگرال گیری عددی مجموعه معادلات حاکم بر کل سازه به دست می آید. در میان روش های انتگرال گیری، روش جداسازی عملگرها (OS) برای شبیه سازی هیبرید دارای دقت و پایداری بیشتری نسبت به روش های صریح بوده و از طرفی برخلاف روش های ضمنی نیاز به انجام تکرار و تناوب بر روی نمونه آزمایشگاهی ندارد. ازطرفی در این روش استفاده از ماتریس سختی اولیه در گام اصلاح کننده آن، موجب مخدوش شدن دقت نتایج در محدوده رفتار غیرخطی می شود. این مقاله یک روش بهبود یافته بر پایه روش جداسازی عملگرها، بنام روش جداسازی عملگرهای بهبود یافته (MOS) پیشنهاد کرده که در آن با ارائه الگریتمی، دقت مرحله پیش بینی کننده افزایش داده شده و در نتیجه اثر تقریب ماتریس سختی اولیه در مرحله اصلاح کننده کاهش داده می‌شود. کارایی این روش برای محدوده وسیعی از سیستم های سازه ای، سطوح شکل پذیری و درجات آزادی مورد مطالعه قرار گرفته و نتایج به دست آمده نشان دهنده عملکرد موفقیت آمیز این روش در به دست آوردن پاسخ های کاملا صحیح و پایدار و نیز دقت بالاتر نسبت به روش جداسازی عملگرها می باشد. هم چنین نتایج روش جداسازی عملگرهای بهبود یافته در شرایطی که خطاهای آزمایشگاهی مدل سازی شده‌ باشند، نشان دهنده کارایی بسیار خوب این روش در حل معادلات حرکت می باشد.

کلیدواژه‌ها


عنوان مقاله English

Improved Integration Algorithm for Application to Hybrid Simulation of Numerical and Experimental Models

نویسندگان English

Abbas Ali Tasnimi 1
Abbas Ali Tasnimi 1
1 Tarbiat Modares University
چکیده English

Hybrid simulation which combines experimental and numerical modeling is a powerful and relatively new test method for evaluating the seismic performance of structural systems. In this method only critical components of structure are tested experimentally while the rest of the structure is numerically modeled in the computer. In this method the response of the structure is achieved by numerically integrating the equation of motion of the whole system. Among numerical integration methods, operator splitting (OS) method is of great interest for hybrid simulation, since not only its results are more accurate and stable in comparison with explicit methods but also its application for hybrid simulation is much more easier than implicit methods; the reason is that in OS method it is not required to conduct iteration on experimental element or estimate its tangent stiffness matrix during the simulation, the tasks which limit the application of implicit methods for hybrid simulation. But OS method suffers from the shortcoming that the use of initial stiffness matrix in its corrector step decreases the accuracy of results in nonlinear range. This paper presents a modified form of OS method which is termed modified operator splitting (MOS) integration method in which by proposing a new procedure in the predictor step, the accuracy of this step is increased. When the accuracy of the predictor step increases, the difference between predictor and corrector displacements decreases and as a result the effect of initial stiffness approximation becomes less important. This would finally result in the improved accuracy of the whole simulation, as is shown in the paper. The performance, accuracy and stability characteristics of the proposed integration method were studied through numerical simulations, where it was assumed that the restoring force of the system is achieved experimentally and no information about the experimental stiffness is available. The results showed that for the wide range of considered systems including various natural periods, various ductility ratios and various degrees of freedom, MOS results are more accurate than OS method. This shows that the employed method of the predictor step of MOS method has successfully decreased the length of the corrector step with initial stiffness assumption. All the employed error indices also verified that not only the results of MOS are in great harmony with the reference solution but also its accuracy is improved over regular OS method, especially in simulations involving severe nonlinearity. Furthermore results of multi degree of freedom systems with high frequency modes show that MOS results are quite stable as long as the accuracy of important modes of the system is maintained, which is usually the case. As in a real hybrid simulation, experimental errors also affect the accuracy and stability of integration methods, in this paper a hybrid simulation algorithm is numerically modeled and the effect of actuator time delay on the performance of MOS method is investigated. It was observed that in the presence of actuator delay, which is known to be one of the most important sources of experimental errors in hybrid simulation, MOS integration method has solved the equation of motion in an accurate and stable manner with very small level of errors in comparison with the reference solution.

کلیدواژه‌ها English

"Hybrid simulation"
"numerical integration"
"Error index"
"Stability"
"Seismic response"
  1. Mahin SA and Shing PSB. Pseudodynamic method for seismic testing. Journal of Structural Engineering 1985; 111(7): P 1482-1503.

  2. Takanashi K and Nakashima M. Japanese activities on on-line testing. Journal of Engineering Mechanics 1987; 113(7): 1014–1031.

  3. Nakashima M, Kato H and Takaoka E. development of real-time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics 1992; 21(1): 79-92.

  4. Shing PSB, Nakashima M and Bursi O. Application of pseudodynamic test method to structural research. Earthquake spectra 1996, 12:29-56.

  5. Nakashima M. Development, potential, and limitations of real-time online (pseudodynamic) testing. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 2001; 359(1786): 1851-1867.

  6. Ahmadizadeh M. “real-time seismic hybrid simulation procedures for reliable structural performance testing” PhD Dissertation in Department of Civil, Structural and Environmental Engineering, 2007, University at Buffalo.

  7. Nakashima M, Kaminoso T, Ishida M and Kazuhiro A. Integration techniques for substructure online test. 4th US National Conference of Earthquake Engineering, Palm Springs, CA 1990; 515-524.

  8. Ahmadizadeh M and Mosqueda G. Hybrid simulation with improved operator-splitting integration using experimental tangent stiffness matrix estimation. Journal of Structural Engineering 2008, 134(12):1829-1838.

  9. Hung CC and El-Tawil S. A method for estimating specimen tangent stiffness for hybrid simulation. Earthquake Engineering and Structural Dynamics 2009; 38(1): 115-134.

  10. Hung CC and El-Tawil S. Full operator algorithm for hybrid simulation. Earthquake Engineering and Structural Dynamics 2009; 38: 1545-1561.

  11. Wu B, Xu G, Wang Q and Williams MS. Operator-splitting method for real-time substructure testing. Earthquake Engineering & Structural Dynamics 2006; 35(3): 293-314.

  12. Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics 1959, 85(3):67–94.

  13. Bathe KJ. Finite Element Procedures in Engineering Analysis. Prentice-Hall 1982.

  14. Mosqueda G, Stojadinovic B and Mahin SA. Real-time error monitoring for hybrid simulation. II: structural response modification with error. Journal of Structural Engineering 2007; 133(8): 1109-1117.

  15. Combescure D, Pegon P. α-Operator splitting time integration technique for pseudodynamic testing error propagation analysis. Soil Dynamics and Earthquake Engineering 1997; 16(7–8):427–443.

  16. Ahmadizadeh M, Mosqueda G and Reinhorn AM. Compensation of actuator delay and dynamics for real-time hybrid structural simulation. Earthquake Engineering and Structural Dynamics 2008, 37(1): 21-42.