اثر منابع مختلف تهیه مدل های رقومی ارتفاعی بر شاخص توپوگرافی و نتایج حاصل از مدل نیمه توزیعی TOPMODEL

نویسندگان
1 عضو هیئت علمی دانشگاه بین المللی امام خمینی (ره)، دانشکده فنی و مهندسی ، گروه مهندسی آب
2 استادگروه مهندسی آب دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)
چکیده
مدلهای رقومی ارتفاعی (DEMs) به عنوان یکی از ورودی‌های مهم بیشتر مدلهای بارش- رواناب به شما می‌آیند. در حال حاضر منابع مختلفی همچون: DEMهای SRTM و ASTER وجود دارند که با توجه به سهولت دسترسی و رایگان بودن از جایگاهی ارزشمند در مدلسازی‌های هیدرولوژیکی و استخراج خصوصیات ژئومورفولوژیکی حوضه‌ها برخوردار می‌باشند. در تحقیق حاضر به بررسی اثر منابع مختلف تهیه DEM بر شاخص توپوگرافی و نیز نتایج حاصل از مدل نیمه توزیعی TOPMODEL پرداخته شده است. نتایج حاکی از آن است که اختلاف بین متوسط شاخص توپوگرافی بدست آمده از DEMهای SRTM و نقشه‌های 1:50000 زمینی همواره بیشتر از مقادیر متناظر بدست آمده از DEMهای ASTER و نقشه‌های 1:50000 زمینی می‌باشد. بررسی نتایج حاصل از خروجی TOPMODEL نیز نشان می‌دهد که متوسط دبی روزانه، متوسط کمبود اشباع حوضه و متوسط فاصله تا تراز سطح ایستابی حوضه در منابع مختلف اختلاف چندان معنی‌داری با یکدیگر ندارند. اما شاخص کارائی بدست آمده بر مبنای DEMهای SRTM همواره از نتایج بدست آمده از نقشه‌های زمینی و DEMهای ASTER کمتر می‌باشد. در دبی‌های روزانه، شاخص کارائی مدل بر اساس DEMهای ASTER تا محدوده ابعاد سلولی 500 متر با نتایج بدست آمده از نقشه‌های زمینی تطابق مناسبی داشته و این در حالیست که در جریان‌های ساعتی (سیلاب) نتایج حاصل از دو منبع فوق در تمامی ابعاد سلولی تقریباً یکسان ارزیابی می‌شود.

کلیدواژه‌ها


عنوان مقاله English

Effect of Data Resolution on Topographic Index and Performance of the Simi-Distributed Model: TOPMODEL

نویسنده English

Alireza Shokoohi 2
چکیده English

Digital Elevation Models (DEMs) are one of the most important inputs in most rainfall -Runoff models and also in deriving watersheds geomorphological characteristics. One of the most important issues that should be taken into account when using DEMs in rainfall runoff modeling is the effects of DEM source on the results of the models. At present time, radar based DEMs are attracting a considerable attention in many earth related fields. Currently, there are several sources such as: Shuttle Radar Topography Mission (SRTM) data and the advanced space thermal emission radiometer (ASTER) that due to ease of access and free of charge, have an important role in hydrological modeling and the extraction of geomorphological parameters of catchments. This paper addressed the effects of different DEM sources: ASTER, SRTM, and 1:50000 topographic based DEM on the topographic index and performance of a semi- distributed model, called TOPMODEL. The obtained results indicated that by increasing DEM cell size, disregarding its source, the topographic index inceased. Also, it was illustrated that for all cell sizes other that 30 m there was no difference between the results of ASTER and SRTM DEM. Such a coincidence was observed for TOPO DEM for cell sizes larger than 100 m, as well. Results showed that the effect of data resolution on the average daily discharge, average saturation deficit of basin and the average distance to water table level is not meaningful. In daily discharge simulation, the performance of TOPMODEL when using the TOPO DEM ,based on the NASH- SUTCLIFFE efficiency index, was the highest and for the SRTM DEM was the lowest. In flood simulation, upto 200 m resolution, TOPMODEL efficiency was constant disregarding the DEM source, while its efficiency reduced for cell sizes greater than 200 m in all conditions. It was illustrated that by increasing the cell size, surface runoff contribution to total runoff, in contrast to subsurface flow, increased. Furthermore, For all of the sources, increasing the DEM cell size, incresesd the surface runoff contribution and decreased subsurface flow. The percent of surface flow simulated by the model when implementing the DEM of SRTM is the highest. According to achieved results, the percentage of simulated surface runoff from SRTM DEM was higher than the other two sources. It was observed that the number of cells of low slope in SRTM DEM is greater than the other sources, which was concluded as the main reason for this issue. Reducing the slope of a cell could reduce its potential to carry subsurface flow, which in turn could increase the cell potential to be saturated. It was concluded that DEM different sources effects on average saturation deficit and water table is negligible, and these ouputs of TOPMODEL is mainly affected by DEMs cell size. Finally, this important conclusion was drawn from the present research that the information content of ASTER DEM is nearly similar to TOPO DEM and higher than SRTM DEM; therefore, between satellite based DEMs, it is more convenient to use ASTER DEM for rainfall runoff modeling.

کلیدواژه‌ها English

Digital Elevation Models
SRTM and ASTER DEMs
Semi-Distributed model (TOPMODEL)
Topographic Index
[1] Jenson, S.K. (1991). "Application of hydrologic information automatically extracted from digital elevation models." Hydrological Processes, 5, 31-44.
[2] Wise, S. (2000). "Assessing the quality for hydrological applications of digital elevation models derived from contours." Hydrological Processes, 14(11), 1909–1929.
[3]  Mathuis, B. and Sijmons, K. (2005). "DEM from active sensors – shuttle radar topographic mission (SRTM)." International Institute for Geo-Information Science and Earth Observation, 1-121.
[4] Ludwig, R., Taschner, S. and Mauser, W. (2006). "Modeling floods in the Ammer catchment: limitations and challenges from a coupled meteo-hydrological model approach." Hydrology and Earth System Sciences, 7 (6), 833–847.
[5] Quan, N.H. (2006). "Rainfall-runoff modeling in the ungauged can le catchment, Saigon river basin." Msc thesis, international institute for geo information science and earth observation Enschede, Netherlands.
[6] Rabus, B., Eineder, M., Roth, A. and Bamler, R. (2003). "The shuttle radar topography mission: a new class of digital elevation models acquires by space borne radar." ISPRS Journal of Photogrammetry and Remote Sensing, 57, 241–262.
[7] Band, L.E. (1986). "Topographic partition of watersheds with digital elevation models." Water Resour.Res. 22, 15-24.
[8] Jenson, S.K. and Domingue, J.O. (1988). "Extracting topographic structure from digital elevation data for geographic information system analysis." Photogrammetric Eng, Remote Sensing, 54, 1593-1600.
[9] Ghyasi, Y., Willgoose, G.R. and DeTroch, F.P. (1995). "Effect of vertical resolution and map scale of digital elevation model on geomorphological parameters used in hydrology." Hydrological Processes, 9(2), 363–382.
 
[10] Baker, C., Lawrence, R., Montagne, C. and Patten, D. (2006). "Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models." Wetlands, 26, 465-474.
[11] Hancock, G. R., "The Use of DEMs in the Identification and Characterization of Catchment over Different Grid Scales", Hydrological Processes, 19(3), pp. 1727–1749, (2006).
[12] Azizian, A. and Shokoohi, A.R. (2015). "Effects of Data resolution and stream delineation threshold effects on the results of a Kinematic Wave based GIUH model." Journal of Water S.A. http://dx.doi.org/10.4314/wsa.v41i1.9, 61-70.
 [13] Rahman, M. M., Arya, D. S. and Goel, N. K. (2010). "Limitation of 90 m SRTM DEM in drainage network delineation using D8 method a case study in flat terrain of Bangladesh." Applied Geomatics, 2 (2), 49–58.
[14] Rawat, J. S., Laskar, B. A. and Konwar, A. (2010). "SRTM DEM and spatial multicriteria evaluation in GIS for fish habitat suitability mapping: arunachal Pradesh (eastern Himalaya)." Geoinformation Science Journal, 10 (2), 62–73.
[15] شکوهی، ع.ر. و عزیزیان، ا. (1393). "ارزیابی اثر استفاده از مدل­های رقومی ارتفاعی راداری و نقشه­های زمینی بر نتایج شبیه­سازی مدلهای ژئومورفولوژیکی" مجله علمی- پژوهشی مهندسی و مدیریت آبخیز.
[16] Beven, K. J. and Kirkby, M. J. (1979). "A physically based variable contributing area model of basin hydrology." Hydrol. Sci. Bull. 24, 43-69.
[17] Gumindoga, W., Rwasokab, D.T. and Murwirac, A. (2011) "Simulation of streamflow using TOPMODEL in the upper Save river catchment." Physics and Chemistry of the Earth, 36, 806-813.
[18] Tarboton, D. G. (1991)."On the extraction of channel networks from digital elevation data", Hydrological Processes, 5(1), 81-100.
[19] Konstantinos, G.N. and Chrysoulakis, N. (2006). "Updating the 1:50.000 topographic maps using ASTER and SRTM DEM.", Proc. of SPIE (September 29), 606–616.
[20] ایازی،م. (1385)." تهیه نقشه 1:100000 مناطق شرق کشور با استفاده از تصاویر ماهواره­ای" پنجمین همایش ژئوماتیک، تهران.
[21] Wise, S.M. (2007). "Effect of differing DEM creation methods on the results from a hydrological model." Computers & Geosciences, 33, 1351–1365