تشخیص آسیب در تیرها با کمک اندازه گیری خیز استاتیکی و آزمون فرض آماری

نویسندگان
1 تهران
2 ایران، تهران، دانشگاه علم و صنعت ایران، دانشکده ی مهندسی عمران
چکیده
تشخیص آسیب های ایجاد شده در اعضای ساختمانی از اهمیت بسیار زیادی برخوردار است. در این مقاله، روشی جدید جهت تشخیص آسیب های رخ داده در تیرها، با کمک جابجایی تیر در اثر اعمال بار استاتیکی (خیز)، ارائه شده است. برای این منظور، جابجایی تیر، در اثر اعمال بار استاتیکی تعیین شده و با کمک آزمون فرض آماری، محل آسیب رخ داده در تیر مشخص شده است. گفتنی است که آزمون فرض آماری، جزء روش های مناسب استنباط آماری بوده و می تواند در مورد ادعای مطروحه پیرامون یک قضیه، با بررسی حالات مختلف و محتمل، اظهارنظر نماید. ادعای آماری مورد استفاده در این مقاله، وجود آسیب در یک المان از تیر می باشد که این ادعا تحت عنوان «فرض مقابل یا Alternative Hypothesis» در نظر گرفته می شود. در نهایت جهت بررسی کارایی روش پیشنهادی، سناریوهای خرابی مختلفی مورد بررسی قرار گرفته است. نتایج بدست آمده حاکی از آن است که با روش پیشنهاد شده، می توان محل آسیب در تیر را با دقت بسیار زیادی تعیین نمود. هم چنین نتایج بدست آمده، حاکی از حساسیت بسیار کم روش پیشنهادی به وجود نوفه های اتفاقی می باشد.

کلیدواژه‌ها


عنوان مقاله English

Damage Detection in Beams Using Static Deflection measurements and Statistical Hypothesis Testing

نویسندگان English

Ali Zare Hossein Zadeh 2
Seyed Ali Seyed Razzaghi 2
چکیده English

Building structures begin to deteriorate once they are built due to harsh environment such as earthquake. To inspect present buildings and bridges following major disastrous events, such as earthquakes and hurricanes is often time-consuming and of high expense. This is also the case in regular operating conditions. Indeed critical members and connections are hidden under cladding and other architectural surface covers. This study aims to propose a novel method for identification of damages occurred in beams based on deflection under static loading. In this paper damage location on a beam is determined using statistical hypothesis testing applied on the deflection of the beam. It is worth mentioning that the statistical hypothesis testing is an appropriate method for statistical inference which can be used to judge a claim concerning an event in regards to different scenarios and possibilities. The statistical claim which would be analyzed is that damage is present among elements of the beam. Deflection of beam as a derivation of stiffness will be utilized here. Hence the basic idea in this study; to locate damages, is behind of calculating the difference between measured and estimated deflection of nodes of each element in both intact and damaged structures. Elements damage can be specified by applying damage index which is defined as D(x). Element’s damages can be judged through the damage index sign in two nodes of every element: The element will be considered damaged if the index is positive for both nodes of middle element or it is positive in only one node of element leading edges of fulcrums. To illustrate the efficiency and robustness of proposed method three different examples are considered. First example is a simple beam with five different scenarios including single and multiple damages. Second example is also presented to show comparison of the proposed method with the study by Abdo [18] and finally third instant is considered for showing reliability of the method in different beam types. For all of the examples, the deflection of damaged beams is recorded via sensors under only one state of static loading and the statistical parameters of the undamaged beams are generated under several static loading. Then by calculation of damage index, we can decide about damage locations. All examples show good performance of the novel method in damage localization. The most important result obtained from these examples is that, the more fine mesh, the better and the more accurate performance of the method. Of course this assertion is more important in the elements leading edges of fulcrums. Further, the performance of this method is demonstrated through damage simulation where the measured data are contaminated with noise and hence to evaluate the stability of the proposed method against various noise levels, scenarios are considered with different such levels.

کلیدواژه‌ها English

Static Deflection
damage detection method
Damage
statistical hypothesis
statistical hypothesis testing
 
[1] Doebling, S.W., Farrar, C.R., Prime, M.B., and Shevitz, D.W.; “Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review”, Los Alamos National Laboratory, Report LA-13070-MS, 1996.
[2] Doebling S.W., Farrar C.R., and Prime M.B.; “A summary review of vibration-based damage identification Methods”, Shock and Vibration Digest; 30(2): 1998, 91-105.
[3] Bicanic, N., and Chen, H.P.; “Damage identification in framed structures using natural frequencies”, International Journal for Numerical Methods in Engineering; 40: 1997, 4451–4468.
[4] Zhao J., and Dewolf, J.T.; “Sensitivity study for vibrational parameters used in damage detection”, Journal of Structural Engineering ASCE; 125(4): 1999, 410–416.
[5] Xia, Y., and Hao, H.; “Statistical damage identification of structures with frequency changes”, Journal of Sound and Vibration; 263: 2003, 853-870.
[6] Yang, Q.W., and Liu, J.K.; “Structural damage identification based on residual force vector”, Journal of Sound and Vibration; 305: 2007, 298–307.
[7] Yang, Q.W.; “A numerical technique for structural damage detection”, Journal of Applied Mathematics and Computation; 215: 2009, 2775–2780.
[8] Ge, M., Lui, E.M., and Khanse, A.C.; “Non-proportional damage identification in steel frames”, Engineering Structures; 32: 2010, 523-533.
[9] Zhu, H., Li, L., and He X-Q.; “Damage detection method for shear building using the changes in the first mode shape slopes”, Journal of Computers and Structures; 89: 2011, 733–743.
[10] Lu, Z.R., and Law, S.S.; “Features of dynamic responses sensitivity and its application in damage detection”, Journal of Sound and Vibration; 303: 2007, 305–329.
[11] Li, X.Y., and Law, S.S.; “Structural damage detection with statistical analysis from support excitation”, Mechanical Systems and Signal Processing; 22: 2008, 1793–1808.
[12] Gul, M., and Catbas, F.N.; “Statistical pattern recognition for Structural Health Monitoring using time series modeling: Theory and experimental verifications”, Mechanical Systems and Signal Processing; 23: 2009, 2192–2204.
[13] Lu, Z.R., and Law, S.S.; “Differentiating damage effects in structural components from the time response”, Mechanical Systems and Signal Processing; 24: 2010, 2914–2928.
[14] Banan, M.R., Banan, M.R., and Hjelmstad, K.D.; “Parameter estimation of structures from static response, I: computational aspects”, Journal of Structural Engineering ASCE; 120(11): 1994, 3243–3258.
[15] Banan, M.R., Banan M.R., and Hjelmstad, K.D.; “Parameter estimation of structures from static response, II: numerical aspects”, Journal of Structural Engineering ASCE; 120(11): 1994, 3259–3283.
[16] Hjelmstad, K.D., and Shin, S.; “Damage detection and assessment of structures from static response”, Journal of Engineering Mechanics; 123(6): 1997, 568–576.
[17] Chen, X-Z., Zhu, H-P., and Chen, C-Y.; “Structural damage identification using test static data based on grey system theory”, Journal of Zhejiang University SCIENCE A; 6A(8): 2005, 790–796.
[18] Abdo, M.A-B.; “Parametric study of using only static response in structural damage detection”, Engineering Structures; 34: 2012, 124–131.
[19] Limongelli, M.P.; “The interpolation damage detection method for frames under seismic excitation”, Journal of Sound and Vibration; 330(22): 2011, 5474-5489.
[20] Bendat, J.S., and Piersol, A.G.; Random Data: Analysis and Measurement Procedures, Wiley-Interscience, 3rd edition, NewYork, 2000.
[21] نعمت اللهی، نادر، آمار و احتمالات مهندسی، انتشارات دالفک، چاپ دوازدهم، تهران، 1389.
[22] Yan, G., Duan, Z., and Ou, J., and Stefano, A.D.; “Structural damage detection using residual forces based on wavelet transform”, Mechanical Systems and Signal Processing; 24: 2010, 224–239.