تأثیرات نامعینی بر رفتار لرزه‌ای قاب‌های خمشی بتن مسلح

نویسندگان
1 دانشجوی کارشناسی ارشد / دانشگاه خوارزمی
2 مدیر گروه مهندسی عمران / تهران، خ دکتر مفتح، دانشگاه خوارزمی، دانشکده فنی و مهندسی
3 عضو هیئت علمی / دانشگاه خوارزمی
چکیده
نامعینی سازه‌ها یک مفهوم نامستقل در مهندسی سازه است که وابستگی ذاتی به عواملی چون مقاومت افزون و شکل‌پذیری سازه‌ها دارد؛ با این وجود عموم پژوهشگران افزایش نامعینی را خاصیتی مطلوب در سازه‌ها برای مقابله موثرتر در برابر بارهای تصادفی نظیر بارهای زلزله دانسته‌اند. در این پژوهش به منظور تفکیک نقش نامعینی از مقاومت‌افزون، تعدادی سازه بتن مسلح با سیستم قاب خمشی که مقاومت نهایی یکسان دارند طرح شده است. رفتار لرزه‌ای این سازه‌ها، از نقطه نظر پارامترهای پاسخ دینامیکی سازه‌ها، تحت شتاب‌نگاشت‌های طبیعی زلزله مورد ارزیابی قرار گرفته است. همچنین کفایت ضرایب رفتار به‌دست آمده در این تحقیق، به عنوان شاخصی از کیفیت رفتار سازه‌ها در زلزله، مورد بررسی قرار گرفته است. نتایج حاصل بیانگر این است که: الف) افزایش نامعینی به تنهایی نمی‌تواند معیاری برای بهبود رفتار سازه‌ها تلقی شود و باید تاثیرات نامعینی بر سایر پارامترهای موثر بر رفتار سازه‌ها لحاظ شود. ب) ضرایب رفتار به‌دست آمده در این تحقیق می‌تواند به عنوان شاخصی از کیفیت رفتار سازه‌ها، برای بارگذاری‌هایی که در سازه تغییر مکان نسبی به میزان مشخصی ایجاد می‌کنند، باشد؛ اما برای بارگذاری‌هایی که تغییر مکان نسبی بیش از آن حد مشخص ایجاد می‌کنند، رفتار سازه‌ها به طور معمول از ضریب رفتار تبعیت نمی‌کند.

کلیدواژه‌ها


عنوان مقاله English

Redundancy in RC Moment Resisting Frames II: Evaluating the Effects of Redundancy on Seismic Behavior

نویسنده English

Ali Massumi 2
2 Head of Civil Engineering Department School of Engineering Kharazmi University No.49, Dr. Mofatteh St., Tehran, IRAN
چکیده English

Structural redundancy is a non-independent concept in structural engineering and has inherent dependence on structural parameters such as overstrength and ductility, so that both of overstrength and ductility capacities should change corresponding to any variation in structural redundancy. Nevertheless, most of researchers notified that taking any increase in structural redundancy should be a desirable property to deal with more effectively against earthquake loading. Furthermore, this issue can reduce structural sensitivity to abnormal loads. In this research to clarify the pure role of redundancy in earthquake resistant design and to distinguish the role of redundancy from total overstrength capacity, a number of 3D reinforced concrete special moment resistant frames (RC-SMRF) with equal ultimate base shear coefficient were designed. The dynamic behavior parameters of the designed structures under natural strong ground motion were evaluated, especially with regards to configuration of nonlinear deformations. The analytical outputs obtained from analyzed structures are illustrated ensembles of maximum acceleration, maximum velocity and maximum drift of each story. Furthermore, adequacy and accuracy of response modification factor which should be assigned as general indicator of quality of total seismic behavior has been studied conceptually. The results of this research indicate that: (i) Assigning an increase in structural redundancy would not always lead to efficient improvement in structural seismic behavior. Furthermore, notification to process of increased redundancy should not be consider as a criterion for any basic improvement in structural performance. This issue means that it is better to consider the effects of redundancy on important seismic parameters such as both the structural member ductility and the overstrength capacity. (ii) The calculated response modification factors as mentioned in this research, can consider as an index of quality of structural dynamic performance which is corresponding to a certain level of redundancy. Accordingly, the above statement should be notified in general cases of those earthquake loadings which would cause a certain level of story drift. This certain level of story drift would denote the structural behavior typically follows the calculated response modification factor. Oppositely, if an earthquake loading causes more story drift from that assigned certain level, structural behavior typically does not follow the calculated response modification factor. (iii) The codified procedure of calculation of response modification factor which were discussed and assessed in this study, cannot be realized subjected to those input strong ground motions that able to display high amplitude and long period pulse or pulses in their velocity time history. It is important to know that strong near-fault ground motions often have an impulsive feature and impose large amounts of sudden intense kinematic energy which must be dissipated by structural system during a short period of time. This issue causes amplified deformation demands in structures which are associated with very few cycles of cumulative plastic deformations. Hence, the earthquake damages due to these seismic load cases are effectively related to maximum deformation as well as maximum ductility. Yet, structures cannot accomplish based on the calculated response modification factor in the mentioned cases.

کلیدواژه‌ها English

Redundancy
ductility
Seismic behavior
Nonlinear Incremental Dynamic Analysis
[1]   . معصومی و ع.ع. تسنیمی؛ «چه وقت می‌توان به ضرایب رفتار اعتماد کرد؟»؛ چهارمین کنفرانس بین‌المللی زلزله‌شناسی و مهندسی زلزله، اردیبهشت 1382 تهران، ایران.
[2]     E. Kalkan and S.K. Kunnath, “Effective Cyclic Energy as a Measure of Seismic Demand”, Journal of Earthquake Engineering, 11:725–751, DOI: 10.1080/13632460601033827,(2007).
[3]     F. Mollaioli and L.D. Decanini, “Characterization of the Dynamic Response of Structures to Damaging Pulse-Type Near-Fault Ground Motions”. Meccanica, 41, 23-46, (2006).
[4]  R.D. Bertero and V.V. Bertero, “Redundancy in Earthquake-Resistant Design”, Journal of Structural Engineering, , Vol. 125, PP.81-88, (1999).
[5]  R.D. Bertero and V.V. Bertero, “Redundancy in Earthquake-Resistant Design: How to Define it and Quantify Its Effects.”, Proceedings of 6th U.S. National Conference on Earthquake Engineering, CD.(1998).
[6]  K. Marhadi and S. Venkataraman, “Surrogate measures to optimize structures for robust and predictable progressive failure”, Structural and Multidisciplinary Optimization, 39, pp.245-261. (2009).
[7]  U. Starossek, “Disproportionate collapse: a pragmatic approach”, Structures & Buildings; 160(SB6), pp. 317-325. (2007).
[8]  SAP2000 Version 14.2.0: A Computer Program for Integrated Finite Element Analysis and Design of Structures, University of California, Berkeley. (2010).
[9]     ر. محمدی، «نامعینی در قاب‌های خمشی بتن مسلح سه بعدی تحت تحریکات لرزه‌ای»؛ پایان‌نامه کارشناسی ارشد مهندسی عمران- سازه، دانشگاه خوارزمی، 1392.
[10] E. Mirenda, and V.V. Bertero, “Evaluation of Strength Reduction Factors For Earthquake-Resistant Design”.Earthquake Spectra, 10(2), pp. 357-379.
[11]  آیین‌نامه طراحی ساختمان‌ها در برابر زلزله (استاندارد 2800 ایران)، ویرایش3، نشریه شماره ض- 253، تهران: مرکز تحقیقات ساختمان و مسکن (1384).
[12] H. Movahed, A. Meshkat-Dini, and M. Tehranizadeh, “Seismic Response of Dual Systems Consisted of Steel Moment-Resisting Frames with Shear Wall under Influencing Pulse Type Ground Motion”, Proceedings of the 4th International Conference on Seismic Retrofitting, Paper Code. EE. 743, Tabriz, IRAN. (2012).
[13] H. Movahed, A. Meshkat-Dini, and M. Tehranizadeh, “Seismic Behavior of Steel Special Moment Resisting Frames Affected by Strong Ground Motions in Near Fault Areas”, 15th Word Conference on Earthquake Engineering, Paper No. 3887, Lisbon, Portugal. (2012).
[14] FEMA356, Prestandard and commentary for Seismic Rehabilitation of Buildings (Federal Emergency Management Agency), (2000)