مقاومت پیوستگی بین آرماتورهای پلیمری مسلح الیافی (FRP) و بتن در تیرهای وصله‌دار

نویسندگان
دانشگاه فردوسی مشهد
چکیده
- برای استفاده از آرماتورهای پلیمری مسلح الیافی (FRP) در سازه های بتن آرمه باید روابط طراحی جدیدی برای آن ها ارائه شود. ایجاد پیوستگی کافی بین بتن و آرماتورهای FRP در محل وصله، یکی از بحث های مهمی است که در طراحی سازه های بتن آرمه باید توجه شود.
هدف از این مقاله ارائه رابطه ای برای تعیین مقاومت پیوستگی آرماتورهای FRP وصله شده در تیرهای بتن آرمه است. به این منظور نخست به کمک نتایج آزمایش های بیرون کشیدگی محققان دیگر، روابطی برای تعیین مقاومت پیوستگی موضعی و مدول تغییر مکان آرماتورهای FRP ارائه می شود. سپس به کمک نتایج آزمایش های وصله کششی در تیرها، رابطه ای برای تعیین مقاومت پیوستگی در طول وصله آرماتور FRP به دست می آید. این رابطه اثر پوشش بتن و آرماتور جانبی وصله را در مقاومت پیوستگی وارد می کند. مقایسه رابطه پیشنهادی و نتایج آزمایشگاهی نشان می دهد که رابطه پیشنهادی با دقت مناسبی مقاومت پیوستگی آرماتورهای FRP در نمونه های تیری وصله دار را پیش بینی می کند. این رابطه با روابط ارائه شده در دیگر آیین نامه ها و مراجع نیز مقایسه شده است.

کلیدواژه‌ها


عنوان مقاله English

Bond Strength between Concrete and FRP Bars for Lap-Spliced Concrete Beams

نویسندگان English

M. Rakhshani Mehr
M.R. Esfahani
S.R. Mousavi
چکیده English

Steel is considered to be one of the desirable materials used for reinforcing concrete structural members. However, the corrosion of steel bars has been always a threat for the service life of reinforced concrete members in corrosive environments. Fiber Reinforced Polymer (FRP) bars can be used as reinforcing materials due to their corrosion resistance. FRP reinforcing bars are available in different grades of tensile strength and modulus of elasticity. These bars have high tensile strength and durability and display linear elastic behavior up to their failure. The behavior of concrete beams reinforced with FRP bars is different from that of steel reinforced concrete beams. Concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars exhibit large deflections and crack widths as compared with steel reinforced concrete beams due to the low modulus of elasticity of GFRP. In addition, the bond between concrete and FRP bars is different from steel bars because of the difference in their surface geometries and mechanical characteristics.
This paper proposes an equation for the bond strength of lap-spliced concrete beams reinforced with FRP bars. First, equations for displacement modulus and local bond strength of FRP bars are formulated by pullout test results, tested by other researchers. Then, using the local bond strength equation and based on the experimental results of lap-spliced FRP reinforced concrete beams, an equation for bond strength of splices is derived. In the formulation of this equation, the non-uniform distribution of the bond stress along the splice length is considered. The effects of concrete cover and transverse reinforcement are also taken into account in the proposed equation. Transverse reinforcement has an important role in the bond strength of beams with spliced bars. Transverse reinforcement confines developed and spliced bars by limiting the progression of splitting cracks and increases the uniformity of bond stress distribution along the splice length and thus, increasing the bond strength.
The bond strengths calculated by the proposed equation are compared with the experimental values. The comparison shows that the proposed equation predicts the splice strength accurately. Also, calculated bond strengths are compared with the values predicted by different code provisions and other models. The average and standard deviation of the experimental over calculated bond strength ratios obtained by the proposed equation are 1.00 and 0.14, respectively. These ratios are 0.65 and 0.19 for the ACI440.1R-06 code, 0.55 and 0.15 for the CAN/CSA-S6-00, 0.67 and 0.16 for the CAN/CSA S806-02 code and 0.99 and 0.36 for the Aly equation. Compared to Aly equation and design guidelines, the proposed equation for calculating the bond strength shows better agreement with experimental values. In addition, code equations overestimate the bond strength of GFRP bars in splices of beams.

کلیدواژه‌ها English

FRP bars
transverse reinforcement
reinforced concrete beam
bond strength
splice
[1]    Okelo, R. and Yuan, R.;"Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete"; Journal of Composites for Construction, Vol. 9, No.3, pp. 203-213, 2005.
[2]    American Concrete Institute Committee 408; "Bond and development of straight reinforcing bars in tension"; ACI 408R-03, Farmington Hills, Mich, 2003.
Tepfers, R. and De Lorenzis, L.; "Bond of FRP reinforcement in concrete"; Journal of Mechanics of Composite Materials, Vol. 39, No.
[3]    4, pp. 447-496, 2003.
[4]    Wambeke, B., and Shield, C.; "Development length of glass fiber reinforced polymer bars in concrete"; ACI Structural Journal, Vol. 103, No. 1, pp. 11-17, 2006.
[5]    Orangun, C. O.; Jirsa, J. O.; and Breen, J. E.; "A Reevaluation of Test Data on Development Length and Splices"; ACI Journal, Proceeding, Vol. 74, No. 3, pp. 114-122, 1977.
[6]    American Concrete Institute (ACI); "Guide for the design and construction of structural concrete reinforced with FRP bars", ACI440.1R-06, Farmington Hills, Mich, 2006.
[7]    Aly, R.; "Experimental and Analytical Studies on Bond Behavior of Tensile Lap Spliced FRP Reinforcing Bars in Concrete"; Ph.D Thesis, University of Sherbrook, Canada, 2005.
[8]    ACI Committee 318M; "Building Code Requirements for Structural Concrete (ACI 318M-02) and Commentary (318RM-02) ", American Concrete Institute, Farmington Hills, Michigan, USA, 443p, 2002.
[9]    CAN/CSA-S6-00; "Canadian Highway Bridge Design Code";Canadian Standards Association, Rexdale, Ontario, Canada, 192 pp, 2000.
[10]      Quayyum, S.; "Bond behavior of fiber reinforced polymer (FRP) rebars in concrete"; B.Sc. thesis, Bangladesh University of Engineering and Technology, Bangladesh, 2010.
Esfahani, M. R., and Rangan, B. V.; "Local Bond Strength of Reinforcing Bars in Normal Strength and High-Strength Concrete"; ACI Structural Journal, Vol. 95, No.2, pp. 96-106, 1998.
    
[11]      Esfahani, M. R., and Rangan, B. V.; "Bond between Normal Strength and High-Strength Concrete (HSC) and Reinforcing Bars in Splices in Beams";ACI Structural Journal, Vol. 95, No. 3, pp. 272-280, 1998.
[12]      Esfahani, M. R., and Kianoush, M. R.; "Development/Splice Length of Reinforcing Bars";ACI Structural Journal, Vol. 102, No. 1, pp. 22-30, 2005.
[13]      Tepfers, R. ; "A Theory of Bond Applied to Overlapping Tensile Reinforcement Splices for Deformed Bars"; Publication 73:2, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 328 pp, 1973.
[14]      Esfahani, M. R., Kianoush, M. R., Lachemi, M.;"Bond strength of glass fiber reinforced polymer reinforcing bars in normal and self-consolidating concrete" ;Canadian Journal of Civil Engineering, Vol. 32, pp. 553-560, 2005.
[15]      Tepfers, R. and Karlsson, M.; "Pull-out and tensile reinforcement splice tests using FRP C-bars"; FRPRCS-3, 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures in Sapporo 14-16 October, pp. 357-364, 1997.
[16]      Tepfers, R.; Hedlund, G.; and Rosinski, B.; "Pull-out and Tensile Reinforcement Splice Test with GFRP Bars"; 2nd International Conference on Composites in Infrastructure, ICCI, 1998.
Aly, R.; "Stress along tensile lap-spliced fiber reinforced polymer reinforcing bars in concrete"; Canadian Journal of Civil Engineering, Vol. 34, pp. 1149-1158, 2007