بررسی اثر ساختار سلولی بر سطح تسلیم فوم‌های فلزی دوبعدی

نویسندگان
دانشگاه تربیت مدرس
چکیده
چکیده- فوم های فلزی دسته ای نوین از مصالح سلولی با ویژگی های سازه ای جالب توجه می باشند که تاکنون شناخت جامعی از خواص خمیری آن ها به دست نیامده است. دشواری های انجام آزمایش های رایج مکانیکی روی مصالح بحث شده موجب شده است تا شبیه سازی عددی ریزساختار این مواد مورد علاقه پژوهشگران قرار گیرد. در راستای چنین مطالعاتی تحقیق پیش رو به بررسی عددی ارتباط میان ساختار سلولی و سطح تسلیم این مصالح می پردازد. در مرحله نخست و برای شبیه سازی تا حد امکان دقیق ریزساختار سلولی، فرایند فیزیکی تولید فوم با استفاده از نمودار ورونویی مبتنی بر مجموعه دایره ها مدل گردیده و سپس تأثیر خمیدگی یال ها و توزیع اندازه سلول ها بر سطح تسلیم اولیه مدل های دوبعدی بررسی شده است. تحلیل به روش اجزای محدود و در مسیرهای گوناگون کرنش دومحوری انجام پذیرفته و نقاط تسلیم در هر حالت بارگذاری با روشی مبتنی بر انرژی تعیین می گردند. در پایان ویژگی های کلی سطوح تسلیم و چگونگی وابستگی آن به ساختار فوم ها بحث شده است.

کلیدواژه‌ها


عنوان مقاله English

The Effect of Cellular Structure on the Yield Surface of 2D Metal Foams

نویسندگان English

A. Davoudi Kia
S. Shahbeyk
چکیده English

Metal foams are a new class of materials with interesting structural properties; however no comprehensive understanding of their inelastic behavior has been established yet. Since the experimental studies of these materials have their own limitations, there is a growing research interest towards the mesostructural modeling of these materials. Accordingly many researchers have been trying to generate realistic and representative numerical models of the foams and prepare computational labs in which different aspects of foams mechanical behavior can be thoroughly investigated. The following three kinds of mesostructures have been commonly employed: (1) models based on a unit cell or a building block, (2) random Voronoi diagrams, and (3) CAD structures provided by the X-ray micro-computed tomography. In the current study, the physically representative circle set Voronoi diagrams are employed to define the geometry of 2D metallic foams. It is assumed that the minimum and maximum radii of the circular generators are 0.5 and 1.5 mm, respectively. The first sample is generated using linear distribution of cell size while, compared to the first sample, the second and third specimens have less and more small cells. An extra specimen (the forth sample) is also created with the same structure of the first one unless its edges are straight. In the next step, the FE models of the specimens are created using second order Timoshenko beam elements. Finally, the effects of microstructural features (e.g. strut curvature and cell size distribution) on the initial yield surface, elastic properties, and failure modes of the foams are numerically investigated under various biaxial loading conditions. Displacement-controlled loading is used. A newly energy-based approach developed for the identification of initial yield points has been incorporated. The results show that: (a) the size of the initial yield surface is significantly influenced by the curvature of the cell struts, (b) in the principal stresses space, the initial yield surface is bigger in the tension-tension region, (c) for a constant relative density, the presence of more big cells in a sample increases the size of the yield envelope, and (d) the macroscopic yield properties of the specimens can be interpreted according the microscopic failure mechanisms of the plastic yielding, elasto-plastic buckling, and plastic hinging of the struts. Furthermore, it is found that the previously proposed energy-based method for the identification of yield initiation under multiaxial loading conditions has serious shortcomings and needs revision.

کلیدواژه‌ها English

Finite element analysis
Microstructure
Yield Surface
metal foam
Voronoi Diagram
[1]    Koerner, C.; Integral Foam Molding of Light Metals: Technology, Foam Physics and Foam Simulation; Springer‐Verlag, p. 5, 2008.
[2]    Da Silva A., Kyriakides S., Compressive response and failure of balsa wood Int. J. Solids and Struct. 44, pp. 8685–8717, 2007.
[3]    MRS Bulletin ‐ Cellular Solids, .
[4]    Stainless‐Steel‐Foam Structures Evaluated for Fan and Rotor Blades, <www.grc.nasa.gov>.
[5]    Ashby M.F., Evans A., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G., Metal Foams: A Design Guide. Butterworth–Heinemann, 2000.
[6]    Deshpande, V.S., Fleck, N.A., Isotropic constitutive models for metallic foams; J. Mech. Phys. Solids 48, pp. 1253-1283, 2000.
[7]    Gioux, G., McCormack, T.M., Gibson, L.J.; Failure of aluminum foams under multiaxial loads; Int. J. Mesh. Sci.Vol. 42, pp. 1097-1117, 2000.
[8]    Lu, T.J., Ong, M.; Characterization of close-celled cellular aluminum alloys; J. Mater. Sci. 36, pp. 2773-2786, 2001.
[9]    Hanssen, A.G., Hopperstad, O.S., Langseth, M., Ilstad, H.; Validation of constitutive models applicable to aluminium foams; Int. J. Mech. Sci. Vol. 44, pp. 359-406, 2002..
[1]      Doyoyo, M., Wierzbicki, T.; Experimental studies on the yield behavior of ductile and brittle aluminum foams; Int. J. of Plasticity 19, pp. 1195–1214, 2003.
[2]      Blazy, J.-S., Marie-Louise, A., Forest, S., Chastel, Y., Pineau, A., Awade, A., Grolleron, C., Moussy, F.; Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect; Int. J. Mech. Sci. 46, pp. 217-244, 2004.
[3]      Ruan D., Lu, G., Ong, L.S., Wang, B.; Triaxial compression of aluminium foams Compos; Sci. Technol, 67, pp. 1218-1234, 2007.
[4]      Peroni, L., Avalle, M., Peroni, M.; The mechanical behaviour of aluminium foam structures in different loading conditions; Int. J. Impact Eng. 35, , pp. 644–658, 2008.
[5]      Combaz, E., Bacciarini, C., Charvet, R., Dufour, W., Dauphin, F., Mortensen, A., Yield surface of polyurethane and aluminium replicated foam; Acta Mater. 58, pp. 5168–5183, 2010.
[6]      Combaz, E., Bacciarini, C., Charvet, R., Dufour, W., Mortensen, A.; Multiaxial yield behaviour of al replicated foam; J. Mech. Phys. Solids 59 , pp. 1777-1793, 2011.
[7]      Shahbeyk, S., Yield/Failure Criteria, Constitutive Models, and Crashworthiness Applications of Metal Foams, in Metallic Foams: Fundamentals and Applications, Dukhan, N., Editor, DesTech Publications, in press.
[8]      Gibson L.J., Ashby M.F.; The mechanics of three-dimensional cellular materials; Proc. R. Soc. A 382 , pp. 43-59, 1982.
Gibson L.J., Ashby M.F., Zhang J.; Triantafillou T.C., Failure surfaces for cellular materials under multiaxial loads-I Modelling; Int. J. Mech. Sci. 31, pp. 635-663, 1989.
[1]      Andrews E.W., Gibson L.J., Ashby M.F.; The creep of cellular solids; Acta Mater. 47, pp. 2853-2863, 1999.
[2]      Jang W.Y., Kraynik A.M., Kyriakides S.; On the microstructure of open-cell foams and its effect on elastic properties; Int. J. Solids Struct. 45, pp. 1845–1875, 2008.
[3]      Jang W.Y., Kyriakides S., Kraynik A.M.; On the compressive strength of open-cell metal foams with Kelvin and random cell structures; Int. J. Solids Struct. 47 , pp. 2872–2883, 2010.
[4]      Zhu H.X., Hobdell J.R., Windle A.H.; Effects of cell irregularity on the elastic properties of open-cell foams; Acta Mater. 48, pp. 4893–4900, 2000.
[5]      Zhu H.X., Windle A.H.; Effects of cell irregularity on the high strain compression of open-cell foams; Acta Mater. 50, pp. 1041–1052, 2002.
[6]      Roberts A.P., Garboczi E.J.; Elastic moduli of model random three-dimensional closed-cell cellular solids; Acta Mater. 49, 2001, pp. 189–197.
[7]      Roberts A.P., Garboczi E.J.; Elastic properties of model random three-dimensional open-cell solids; J. Mech. Phys. Solids. 50, pp. 33–55, 2002.
[8]      Alkhader M., Vural M.; An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations; J. Mech. Phys. Solids 57, pp. 871-890, 2009.
[9]      Alkhader M., Vural M.; The partition of elastic strain energy in solid foams and lattice structures; Acta Mater. 57, pp. 2429–2439, 2009.
[10]  Alkhader M., Vural M.; The A plasticity model for pressure-dependent anisotropic cellular solids; Int. J. Plasticity. 26 , pp. 1591–1605, 2010.