1- Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran. , biglari.a@gmail.com
2- MSc in Structural Engineering, Golestan University, Gorgan, Iran
Abstract: (243 Views)
Steel plates are widely used in various industries, especially in civil engineering. Low cost in implementation and reduction of seismic mass are the advantage of steel shear wall system compared to other structural systems. The goal of a good design is that along with following the existing guidelines and achieving the desired seismic resistance of the structure, the structure is affordable in terms of weight and cost. Considering that according to the design, it is not possible to achieve the optimal use of the structure's capacity by force control method, the theory of uniform deformations was proposed with the assumption of a constant performance level. The subject of design based on performance increase the safety of the structure against earthquake force and design with optimal seismic performance during the useful life of the structure in seismic areas. Also, compared to the design method based on force control, it can lead to a lighter and economical design.
One of the significant ways to reduce the weight and stiffness of shear walls and boundary elements connected to them is to limit the connection of filler plates to boundary elements. In this method, limiting the length of the connection reduces the force on the beams and columns, and as a result, smaller sections can be used.
In this research, in order to achieve the optimal performance level, two concrete frames with steel shear wall resistant system are subjected to nonlinear analysis. Then, the initial evaluation of the behavior and the correctness of the used method are checked. After that, the effective factors in achieving uniform stress in the height of the structure will be investigated. For this purpose, by using the effect of the thickness parameter and the appropriate pattern of connection of the shear steel plate to the surrounding elements, the way of changing the performance and behavior of the structure will be investigated. For this purpose, 3- and 4-story concrete frames with steel shear wall systems were modeled using ABAQUSTM finite element software. The steel used in the steel shear wall system is ST37. First, the connection of steel shear plates to floor beams was considered and then the influence of the partial connection pattern on the seismic performance of the steel shear wall system was investigated. The modeled frames were subjected to dynamic analysis, linear and nonlinear buckling analysis, and cyclic analysis. Based on the obtained results, the property of energy dissipation in the frame with a steel shear wall system with partial connection has increased significantly. Changing the partial connection pattern led to changing the maximum in-plan relative displacement. Also, the surface of the stress distribution shows that in the partial connection, the stress concentration mainly occurred in the place of the steel shear plate connections. In addition, according to the results of cyclic analysis, considering the partial connection of the steel shear wall has led to a decrease in the average energy absorbed in the structure and an increase in its ductility. Also, changing the connection pattern has affected the average amount of absorbed energy in different loading cycles.
Article Type:
Original Research |
Subject:
Civil and Structural Engineering Received: 2024/01/22 | Accepted: 2024/08/13