توسعه بتن ژئوپلیمری عملکرد بالا با خواص عایق حرارتی برتر از طریق استفاده از پودر PET، لاستیک و مصالح فعال‌شده با اکسید کلسیم

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 فارغ التحصیل دکترا، دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان
2 دانشکده مهندسی عمران/ دانشگاه صنعتی اصفهان
چکیده
تحقیقات پیشین به ندرت به بررسی توسعه بتن عایق حرارتی با عملکرد بالا با استفاده از مواد فعال‌سازی شده با اکسید کلسیم پرداخته‌اند. هم‌چنین، تأثیر جای‌گزینی نسبت‌های بالایی از سنگ­دانه‌ها با پودر لاستیک فرسوده و پلی‌اتیلن ترفتالات (PET) بر ویژگی‌های مکانیکی و حرارتی بتن‌های ژئوپلیمری با عمل­کرد بالا کم­تر مورد مطالعه قرار گرفته است. این مطالعه به بررسی توسعه بتن ژئوپلیمری عایق حرارتی با عمل­کرد بالا با استفاده از مواد فعال‌سازی شده با اکسید کلسیم می‌پردازد و یک روش اختلاط نوین را برای بهبود تراکم بتن عایق حرارتی با عمل‌کرد بالا که شامل سرباره فعال‌سازی شده با اکسید کلسیم است، ارائه می‌دهد. در این تحقیق، 10%، 20%، 30%، 40% و 50% از سنگ­دانه‌ها با پودر لاستیک فرسوده و پودر PET جایگزین شده‌اند. آزمایش‌های مقاومت فشاری، خمش چهار نقطه‌ای و مقاومت کششی به منظور تعیین ویژگی‌های مکانیکی بتن انجام شده‌اند. علاوه بر این، آزمایش ضریب هدایت حرارتی برای ارزیابی ویژگی‌های حرارتی بتن توسعه‌یافته انجام گرفته است. نتایج نشان می‌دهند که جایگزینی سنگدانه‌ها با 10% پودر لاستیک فرسوده یا پودر PET، ظرفیت جذب انرژی بتن را به ترتیب تا 143% و 107% افزایش داده است، در حالی که ویژگی‌های مکانیکی به ترتیب تا 10% و 7% کاهش یافته‌اند. استفاده از 50% پودر لاستیک فرسوده و PET به عنوان جایگزینی برای سنگدانه‌ها، ضریب هدایت حرارتی نمونه‌ها را به ترتیب تا 70% و 60% کاهش داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Development of thermal-insulating high-performance geopolymer concrete containing rubber and PET powders with calcium oxide-activated materials

نویسندگان English

Hadi Bahmani 1
Davood MOSTOFINEJAD 2
1 PhD, Department of Civil Engineering, Isfahan University of Technology (IUT), Isfahan,
2 Professor, Department of Civil Engineering, Isfahan University of Technology (IUT), Isfahan
چکیده English

Prior research has not explored the creation of concrete with superior thermal insulation properties using calcium oxide-activated materials. Furthermore, the impact of substituting large proportions of sand with worn rubber powder and PET on the mechanical and thermal characteristics of high-performance geopolymer concrete remains uninvestigated. This study addresses these gaps by examining the development of geopolymeric concrete with enhanced thermal insulation properties using calcium oxide-activated materials. A novel mixing method has been devised to improve the compaction of thermally insulating concrete, which includes calcium oxide-activated slag. For the purposes of this research, worn rubber powder and PET powder have replaced 10%, 20%, 30%, 40%, and 50% of the aggregates. The mechanical properties of the concrete were determined through compressive strength, four-point bending, and tensile strength tests. Lastly, the thermal conductivity coefficient was tested to ascertain the thermal properties of the developed concrete.

The findings revealed that in the developed concrete, substituting 10% of the aggregates with worn rubber powder or PET powder increased the energy absorption capacity of the concrete by 143% and 107%, respectively, while its mechanical properties decreased by 10% and 7%, respectively. Moreover, using 50% worn rubber powder and PET as aggregate substitutes reduced the samples’ thermal conductivity by 70% and 60%, respectively.

 

کلیدواژه‌ها English

Scrap tire
PET
thermal conductivity
geopolymer concrete
[1] Siddique R., Khatib J., Kaur I. 2008 Use of recycled plastic in concrete: a review, Waste Manage. 28, 1835–1852.
[2] Saikia N., de Brito J. 2012 Use of plastic waste as aggregate in cement mortar and concrete preparation: a review, Constr. Build. Mater. 34, 385–401.
[3] Yadav I., Kumar M.G., Goyal S.G. 2008 Laboratory investigations of the properties of concrete containing recycled plastic aggregates.
[4] Pacheco-Torgal F., Ding Y., Jalali S. 2012 Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): an overview, Constr. Build. Mater. 30, 714–724.
[5] Fraternali F., Ciancia V., Chechile R., Rizzano G., Feo L., Incarnato L. 2011 Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete, Compos. Struct. 93, 2368–2374.
[6] Foti D. 2013 Use of recycled waste pet bottles fibers for the reinforcement of concrete, Compos. Struct. 96, 396–404.
[7] Thomas B.S., Gupta R.C. 2016 A comprehensive review on the applications of waste tire rubber in cement concrete, Renew. Sustain. Energy Rev. 54, 1323– 1333.
[8] Gu L., Ozbakkaloglu T. 2016 Use of recycled plastics in concrete: a critical review, Waste Manage. 51, 19–42.
[9] Mohammed A.A. 2017 Flexural behavior and analysis of reinforced concrete beams made of recycled PET waste concrete, Constr. Build. Mater. 155, 593– 604.
[10] Islam M.J., Meherier M.S., Islam A.K.M.R. 2016 Effects of waste PET as coarse aggregate on the fresh and hardened properties of concrete, Constr. Build. Mater. 125, 946–951.
[11] Choi Y.W., Moon D.J., Kim Y.J., Lachemi M. 2009 Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles, Constr. Build. Mater. 23, 2829– 2835.
[12] Al-Manaseer A.A., Dalal T.R. 1997 Concrete containing plastic aggregates, Concr. Int. 19, 47–52.
[13] Soroushian P., Plasencia J., Ravanbakhsh S. 2003 Assessment of reinforcing effects of recycled plastic and paper in concrete, Mater. J. 100, 203–207.
[14] Marzouk O.Y., Dheilly R.M., Queneudec M. 2007 Valorization of post-consumer waste plastic in cementitious concrete composites, Waste Manage. 27, 310–318
[15] Chou L.-H., Lin C.-N., Lu C.-K., Lee C.-H., Lee M.-T. 2010 Improving rubber concrete by waste organic sulfur compounds, Waste Manage. Res. 28, 29–35.
[16] Pierce C.E., Williams R.J. 2004 Scrap tire rubber modified concrete: Past, present and future, in: Proc. Int. Conf. Organ. by Concr. Mason. Res. Group, Kingst. Univ. Eds MC Limbachiya JJ Roberts, Sustain. Waste Manag. Recycl. Used-Post-Consumer Tyres, Thomas Telford, 1–16.
[17] Holmes N., Browne A., Montague C. 2014 Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement, Constr. Build. Mater. 73, 195–204.
[18] Sukontasukkul P., Tiamlom K. 2012 Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size, Constr. Build. Mater. 29, 520–526.
[19] Iman M. Nikbin, Soudabeh Dezhampanah, Shahin Charkhtab, Sadegh Mehdipour, Iman Shahvareh, Mahdi Ebrahimi, Ahmad Pournasir, Hasan Pourghorban, 2022 Life cycle assessment and mechanical properties of high strength steel fiber reinforced concrete containing waste PET bottle, Constr. Build. Mater. 337, 127553.
[20] Bahmani H., Mostofinejad D., Dadvar S.A. 2020 Mechanical properties of ultra-high-performance fiber-reinforced concrete containing synthetic and mineral fibers, ACI Mater. J. 117 (3), 155–168.
[21] Bahmani H., Mostofinejad D., Dadvar S.A. 2020 Effects of Synthetic Fibers and Different Levels of Partial Cement Replacement on Mechanical Properties of UHPFRC. J. Mater. Civ. Eng., 32(12), 04020361.
[22] Bahmani H., Mostofinejad D., Dadvar S.A. 2022 Fiber type and curing environment effects on the mechanical performance of UHPFRC containing zeolite, Iran. J. Sci. Technol. Trans. Civ. Eng.
[23] Bahmani H., Mostofinejad D. 2022 Microstructure of ultra-high performance concrete (UHPC)-a review study, J. Build. Eng. 50, 104118.
[24] Van Deventer J.S., Provis J.L., Duxson P. 2012 Technical and commercial progress in the adoption of geopolymer cement, Miner. Eng. 29, 89–104.
[25] Van Jaarsveld J., Van Deventer J., Lorenzen L. 1997 The potential use of geopolymeric materials to immobilize toxic metals: Part I, Theory Appl. Miner. Eng. 10, 659–669.
[26] Shi C., Day R.L. 1996 Some factors affecting early hydration of alkali-slag cements, Cem. Concr. Res. 26, 439–447.
[27] Bahmani H., Mostofinejad D. 2023 High-performance concrete based on alkaline earth metal ions-activated slag at ambient temperature: Mechanical and microstructure properties, Journal of Materials Research and Technology.
[28] ASTM C496. (2004) Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book of ASTM Standards
[29] ASTM C1018-97, 1992. Standard Test for Flexural Toughness and First-Crack Strength of Fiber Reinforced Concrete (Using Beam with Third Point Loading). ASTM International, West Conshohocken, PA, USA.