Volume 13, Issue 2 (2013)                   MCEJ 2013, 13(2): 161-172 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdandoust M, Yazdani M. Experimental Study on the Effect of Aggregate Fineness Modulus on Physical and Mechanical Properties of Concrete. MCEJ 2013; 13 (2) :161-172
URL: http://mcej.modares.ac.ir/article-16-7065-en.html
1- Tarbiat Modarres University
Abstract:   (16348 Views)
  Abstract: Concrete is one of moderately new materials, which is used widely because of its appropriate properties. Many Scientifics and researchers have tried to develop and utilize the beneficial properties of this new material and as a result its ingredients have been investigated extensively. Concrete properties are dependent on many parameters such as ingredients, production and technology, construction methods and curing conditions that have made concrete a complex and unpredictable material. But these are virtually ignorable against its precious advantageous and precise studies on above parameters may help us to produce concretes with desirable properties. As it was discussed previously, ingredients are of those important parameters that play an essential role. Therefore investigating ingredients, their interactions and effects of their properties on properties of concrete are seriously important. Of the most important of concrete ingredients are aggregates, which are usually deemed unimportant despite their momentous contribution to concrete production. As about three forth of concrete's volume is its aggregates, studying aggregates' properties including the effect of grain size distribution on physical and mechanical properties of concrete is pivotal, although few comprehensive and acceptable investigations have been carried so far. Shape, particle size distribution, dimensions, surface characteristics, and minerals are parameters which are effective in making a homogenous and united medium. In fact there are various parameters (criteria) which determine an ideal material. In this study, the effect of fineness module of fines aggregate on mechanical and physical parameters of concrete has been investigated among other parameters. Fineness module is defined as total accumulated percentage of remained material on standard sieves in fines range. In this study and in respect to above factors, in order to study the effect of fineness modulus of aggregates on physical and mechanical properties of concrete, using 7 different grain size distributions with various fineness modulus and 11 cement-water ratios, totally 77 different mix designs were tested for slump test. Also 462 samples were prepared using those various mix designs and were tested at 7 and 28-day life long under compressive loads. The obtained results suggest clearly the direct effect of fineness modulus of aggregates on mechanical and physical properties of concrete. In details, the decrease in fineness modulus from 3.26 to 2.66 has caused an increase in slump values and compressive strengths. The rise in compressive strength can be addressed to more unity for aggregates with smaller fineness modulus. Furthermore, the existence of smaller aggregates (smaller fineness modulus) has led to more comfortable conditions for larger grains to travel. This in turn incited the slump values' boost while fineness modulus decreased. As a result it can be concluded that the grain size distribution can play a crucial role in dominating physical and mechanical properties of concrete.    
Full-Text [PDF 1516 kb]   (22480 Downloads)    

Received: 2013/08/19 | Accepted: 2013/04/21 | Published: 2013/08/19

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.