Volume 19, Issue 3 (2019)                   MCEJ 2019, 19(3): 145-157 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

kaboosi K, fadavi M, Setaiesh E. The effect of briny groundwater and zeolite on compressive strength of plain concrete (case study: northern and eastern dry regions of Golestan province). MCEJ 2019; 19 (3) :145-157
URL: http://mcej.modares.ac.ir/article-16-25057-en.html
1- Department of Water Engineering, Gorgan branch, Islamic Azad University, Gorgan, Iran , kkaboosi@yahoo.com
2- Department of Civil Engineering, Gorgan branch, Islamic Azad University, Gorgan, Iran
Abstract:   (4619 Views)
Global water scarcity and air pollution by greenhouse gases have amplified the need to use of unconventional water and environmental friendly materials in the concrete industry. Because of its proximity to the Caspian sea, the geological conditions and hydrogeological characteristics of the northern and western regions of Golestan province, groundwater in this area is very salty. On the other hand, due to lack of access to good quality surface water in most of the months, civil and construction activities in this area are always challenging. Accordingly, the present study was conducted to investigate 120 treatments (including three levels of water quality including tap water, briny grounwater and  mixture of equal ratio of tap water and briny grounwater), four levels of zeolite (including 0, 10, 20 and 30 percent of zeolite application instead of cement in the concrete mix design), two levels of cement content (including 250 and 350 kg.m-3) and five curing ages (including 3, 7, 21, 56 and 90 days) in three replications. Considering the considerable types of the experimental treatments in this study and in respect to the lack of statistical analysis in previous studies, the results of this study were analyzed based on a completely randomized design with factorial experiment using analysis of variance (ANOVA) and means comparison (LSD) tests. Averagely, use of briny groundwater resulted insignificant increase in the compressive strength of concrete specimens compared to tap water, while combined water significantly decreased this property, but this reduction was within permissible range 10 percent based on national and international standards. Also, replacement of 10, 20 and 30 percent of cement by zeolite compared to non-zeolite treatment significantly reduced the compressive strength of concrete specimens by 9.9, 9.5 and 23.1 percent, respectively, but the difference between replacement level 10 and 20 percent was not significant. However, Concurrent use of briny groundwater and zeolite up to 20% can be recommended without significantly reducing the compressive strength of concrete. In the cement content of 250 kg.m3, the difference between tap water and combined water treatments was not significant, but the use of briny groundwater resulted significance increase in compressive strength of concrete pieces by 22.8 and 21.8 percent compared to tap water and combined water, respectively. In contrast, in the cement content of 350 kg.m-3, the highest compressive strength was obtained in samples made with tap water, briny groundwater and combined water, respectively, and the differences between them were statistically significant. The results showed that due to double and triple interaction of these three factors on compressive strength of cement pieces, which means different effects of water quality and application percent of zeolite on different content of cement, the choice of the best application level of zeolite and water type according to the cement content should be selected based on the mix design test in building site. However, using of briny grounwater and zeolite in the concrete mix design, especially in cement content of 350 kg.m-3, without significantly reducing the compressive strength of concrete and even significantly increase of this property in some treatments, is recommended.
Full-Text [PDF 308 kb]   (3897 Downloads)    
Article Type: Original Research | Subject: Civil and Structural Engineering
Received: 2018/09/12 | Accepted: 2019/03/13 | Published: 2019/10/2

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.