Volume 19, Issue 3 (2019)                   MCEJ 2019, 19(3): 199-210 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoudi Rad M, Khanjani M J. Experimental Study of Flow Energy Dissipation in a Vortex Structure Using Full Factorial Method. MCEJ 2019; 19 (3) :199-210
URL: http://mcej.modares.ac.ir/article-16-22461-en.html
1- Ph.D. candidate, Civil Eng. Dept., Faculty of Civil Eng., Shahid Bahonar University of Kerman , m.m6456@yahoo.com
2- Professor of civil Engineering., Faculty of Civil Eng., Shahid Bahonar University of Kerman
Abstract:   (4678 Views)
With rapid rise in development of urban districts, a ferocious demand for water-collecting urban sewer systems is inevitable. In fact, flexible sewer collecting systems and drainage systems should be developed for controlling sewage and runoff, respectively. In the case of underground, conducting water flow properly through high vertical distances needs reliable criteria design for dissipating flow energy. Vortex structure is taken into account as one of the economical infrastructures which can be used to eradicate destructive impacts of inflow over a drop with invert elevation. In the current investigation, a physical model, made of Plexiglas segments, was set up to study hydraulic performance of vortex drop structure in terms of flow energy dissipation efficiency (FEDE). 144 experiments were conducted and analyzed by means of full factorial method (FFM). Results of dimensional analysis demonstrated that Froude number (Fr), ratio of drop total height to shaft diameter (L/D), and ratio of sump depth to shaft diameter (Hs/D) were considered effective variables on the FEDE. Hence, a regression based equation in form of a quadratic polynomial was proposed to estimate FEDE variable. Experiments aims were to investigate simultaneous effects of approach flow Fr, L/D, Hs/D on the FEDE. Results of experiments indicated that FEDE variable had downward trends with an increase in Fr variable and additionally, FEDE has gone through upward trends with an increase of L/D and Hs/D ratios. Increase in , which causes remarkable effect of wall friction on vortex flow, leads to increase in FEDE in the structure. Moreover, observations showed that decrease in inlet discharge for smaller Froude number results in more rotations of vortex flow in vertical shaft than flow with larger discharges for larger Froude number. This causes reduction of FEDE due to increase in inlet discharge. In addition, shown that in the structures with smaller L/D (L/D=10), the reduction effect of  on the FEDE is more. With respect to positive effects of sump depth range (Hs/D=1-1.6) on FEDE and flow patterns observed in the entrance outlet tunnel, range (Hs/D=1-1.6) can be replaced by Hs/D range (0.7-1) proposed Zhao et al. [11]. In addition, the results showed that the interaction of  and Hs/D on the FEDE in the structure is not significant.
For Q between 9.7 and 27.1 l/s, formation of hydraulic jump in tangential inlet was not occurred and flow was drained freely to drop shaft. Additionally, water surface in tangential inlet was lower than that of approach channel. In the outlet part of vortex structure, flow hitting the baffle leads to relatively significant increase in flow elevation top of the baffle in comparisons with other parts. Moreover, for constant values of Q and Hs/D ratio, flow elevation over the baffle has increased with an increase in L/D ratio, while for constant values of Q and L/D ratio, flow elevation has plummeted with an increase in Hs/D. Observations of experiments indicated that baffle-hitting flow accelerated without existence of sump at the base of drop shaft. Then caused to detaching flow and consequently occurrence of cavitation increased.
Full-Text [PDF 327 kb]   (3675 Downloads)    
Article Type: Original Research | Subject: Hydraulical Structures
Received: 2018/06/26 | Accepted: 2019/03/13 | Published: 2019/10/2

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.