Volume 19, Issue 6 (2020)                   MCEJ 2020, 19(6): 155-168 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimbasiri A, Norouzoliaei M, Heidarzadeh H. Experimental study of pressure grouted soil interface resistance by direct shear tests. MCEJ. 2020; 19 (6) :155-168
URL: http://mcej.modares.ac.ir/article-16-36487-en.html
1- M.Sc. Student (Geotechnical Engineering), Department of Civil Engineering, Tarbiat Modares University
2- Assistant Professor (Geo technical Engineering), Department of Civil Engineering, Tarbiat Modares University , m.olyaei@modares.ac.ir
3- Assistant Professor (Geo technical Engineering), Department of civil Engineering, Faculty of Technology and Engineering, Shahrekord University
Abstract:   (3414 Views)
With increasing urban population, the need for underground spaces increases and deep excavation is an inevitable affair in civil projects. deep tunnels and large buildings require deep excavations, which is a must use some techniques for stabilize it. grouted soil nail is a popular reinforcement to stabilize slopes, excavations and retaining walls. This method has been introduced to Hong Kong in the mid-1980s and has become an alternative solution to the conventional slope stabilizing methods such as compaction, earth retaining structure, or reduced inclination of the slope, etc. this method is based on sewing the potential failure wedge of soil on the stable soil using some inactive (un-prestressed) elements. the shear strength-displacement behavior at the interface between the grouted nail and surrounding soil is an important parameter in design of various geotechnical engineering projects, for example, soil nails, retaining walls, shallow foundations, pile foundations, etc. in soil nail system, the most common method to measure the interface shear strength is pullout test. It is also possible to determine the interface strength based on the development of resistance between soil and grout in direct shear tests. However, accurate perception of the shear behavior in the connection area of the soil and grout is essential to reach an optimum design. In other words, the interaction between soil and grouted nail is necessary to design an optimum soil nail system. the most common method for determination grouted soil interface resistance is pullout test but there is another experiment that can yield acceptable results. The current study investigates the interface shear behavior between cement-grout and granular soil in direct shear test with different grout pressures ( up to bar) and different overburden pressures ( up to 300 kPa). For this purpose, a number of direct shear tests are performed by modifying of the standard shear box for injection of grout. “Firozkooh” sand is used in this study. The soil is compacted to the relative density of % and the slurry is sprayed with pressure on its surface. Furthermore, results of two pullout tests were used for verification. These pullout test have already been presented in another study with different normal stress and grout pressure. it is shown that the results of direct shear test and pullout test at interface are similar. this may indicate the proper function of direct shear test as a suitable choice alongside pullout test. It was observed that shear stress–displacement curves of the soil-grout interface in direct shear tests are similar to the soil-soil tests; which are classified under different grouting pressures. In addition, increasing grout pressure increases shear strength by increasing the angle of friction and bonding of soil and slurry. The effect of adhesion is dominant. it is shown that The interface shear stress under different grouting pressures is greater than the shear stress of soil under the same normal stresses. it is shown that grouting pressure and normal stress have influence on the behavior of soil-cement interface. Therefore, interface shear strength increases with increase in overburden and injection pressure. The variation of the interface shear strength is approximately linear versus grouting pressure. Finally, a formula is proposed for interface shear strength considering grouting pressure.
Full-Text [PDF 569 kb]   (782 Downloads)    
Article Type: Original Research | Subject: Geotechnic
Received: 2019/09/16 | Accepted: 2019/10/22 | Published: 2020/02/29

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.