ارزیابی جابه جابی نسبی قاب‌های خمشی فولادی دارای میانقاب‌های مصالح بنایی با در نظر گرفتن آثار افزایش زمان تناوب ناشی از شکست میانقاب‌ها در مدلسازی میرایی

نویسندگان
1 کارشناس ارشد مهندسی زلزله، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
2 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
چکیده
در حالی که مشاهدات پس از زلزله‌ها اهمیت مدلسازی میانقاب‌ها در محاسبات سازه‌ها را نشان داده‌اند، عموما میانقاب‌ها در محاسبات سازه‌ها مدلسازی نمی‌شوند. در این مطالعه، عملکرد جابه‌جایی نسبی قاب‌های خمشی فولادی سه و نه طبقه دارای میانقاب‌های مصالح بنایی با دو چیدمان میانقاب در همه‌ طبقات و بدون میانقاب در طبقه‌ اول به صورت احتمالاتی و با در نظر گرفتن عدم قطعیت رکورد به رکورد زلزله ارزیابی شد. از نرم‌افزار OpenSees برای مدلسازی غیرخطی سازه‌ها استفاده شد و میانقاب‌ها با دستک فشاری مدلسازی شدند. زمان تناوب سازه‌های دارای میانقاب بعد از شکست میانقاب‌ها به شدت افزایش پیدا می‌کند. برای بررسی آثار این افزایش زمان تناوب در مدلسازی میرایی رایلی، میرایی رایلی با استفاده از روش متداول در ادبیات فنی و روش میرایی اصلاح شده مدلسازی شد و پاسخ‌های دو روش با هم مقایسه شدند. تحلیل‌های دینامیکی افزاینده با استفاده از 78 رکورد زلزله حوزه دور انجام شدند و منحنی‌های شکنندگی جابه‌جایی نسبی و میانگین فراوانی سالیانه عبور از چهار سطح جابهجایی نسبی 0/7، 2/5، 5 و 15 درصد، ، بدست آمد. نتایج نشان می‌دهند که در سطوح بالاتر جابه‌جایی نسبی اثر مثبت میانقاب‌ها به دلیل شکست آنها کاهش می‌یابد و عدم وجود میانقاب در طبقه‌ اول منجر به ایجاد پدیده طبقه‌ نرم می‌شود. برای نمونه، در روش میرایی اصلاح شده، در سازه سه طبقه با چیدمان میانقاب در همه‌ طبقات، میانقاب‌ها در سطح جابه‌جایی نسبی 0/7 درصد مقدار λMD را 43 درصد کاهش داده‌اند اما در سطح جابه‌جایی نسبی 15 درصد این کاهش به 19 درصد رسیده است. به علاوه، روش متداول مدلسازی میرایی در ادبیات فنی پاسخ‌ها را دست پایین برآورد می‌کند

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Drift assessment of steel moment frames with masonry infills considering period elongation effects due to infill failure in damping model

نویسندگان English

Seyed Alireza Bazregari 1
Mansoor Yakhchalian 2
1 Master of Science, Department of Civil Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
چکیده English

Masonry infills are generally assumed as non-structural elements in structural calculations and are not modeled. However, observations after past earthquakes have shown that masonry infills have significant effects on the seismic performance of structures and their seismic behavior should not be neglected. Additionally, the absence of masonry infills in the first story, which is common in structures for commercial and architectural reasons, has led to the occurrence of the soft story phenomenon in past earthquakes. The maximum interstory drift ratio (MD) is the most important criterion for assessing seismic damage and the occurrence of collapse in structures. In this study, the seismic performance of 3- and 9-story steel moment resisting frames (MRFs) with masonry infills was evaluated using a probabilistic framework considering the record-to-record variability. Two configurations were considered for the masonry infills including fully infilled and open ground story configurations. The seismic performance of the MRFs with these two configurations was compared to that of bare MRFs. The OpenSees software was employed for nonlinear modeling of the structures and masonry infills were modeled using single compression-only struts. The fundamental periods of structures with masonry infills significantly increase after the failure of the masonry infills. To evaluate these effects, Rayleigh damping was modeled using the conventional method and a modified method, which considers the severe elongation of fundamental period due the failure of infills, and the responses obtained from the two methods were compared. By performing incremental dynamic analyses using 78 far-field ground motion records, drift fragility curves and mean annual frequencies of exceeding four MD levels of 0.7%, 2.5%, 5%, and 15% (λMD) were obtained for the structures. The MD levels of 0.7%, 2.5%, and 5% correspond to the performance levels of immediate occupancy, life safety, and collapse prevention, respectively. The MD level of 15% corresponds to the seismic collapse of the structures. The results indicate that the presence of masonry infills improves the drift performance of the MRFs with the fully infilled configuration. However, since the masonry infills experience failure at higher drift levels, their effectiveness decreases at these drift levels. For example, by using the modified damping method for the 3-story structure with the fully infilled configuration, the masonry infills reduce the λMD value given MD = 0.7% by 43%, but the reduction in the λMD given MD = 15% is 19%. Furthermore, the absence of masonry infills in the first story leads to the soft story phenomenon at lower drift levels, and therefore, the performance of the structures with the open ground story configuration is worse than that with the fully infilled configuration. It should be mentioned that at higher drift levels, due to the failure of masonry infills, the structures with the two configurations for infills have almost the same performance. Furthermore, the performance of the 9-story structure with the open ground story configuration given some drift levels is even worse than that of the bare 9-story structure. Based on the results obtained, the conventional Rayleigh damping method in the technical literature underestimates the responses.

کلیدواژه‌ها English

Probabilistic assessment
maximum interstory drift ratio
masonry infills
Rayleigh damping
single-strut model
Incremental dynamic analysis
Fragility Curve
[1] Adalier, K. and Aydingun, O., 2001. Structural engineering aspects of the June 27, 1998 Adana–Ceyhan (Turkey) earthquake. Engineering Structures, 23(4), pp: 343-355. https://doi.org/10.1016/S0141-0296(00)00046-8.
[2] Sezen, H., Whittaker, A.S., Elwood, K.J. and Mosalam, K.M., 2003. Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practice in Turkey. Engineering Structures, 25(1), pp: 103-114. https://doi.org/10.1016/S0141-0296(02)00121-9.
[3] Doǧangün, A., 2004. Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey. Engineering Structures, 26(6), pp: 841-856. https://doi.org/10.1016/j.engstruct.2004.02.005.
[4] Zhao, B., Taucer, F. and Rossetto, T., 2009. Field investigation on the performance of building structures during the 12 May 2008 Wenchuan earthquake in China. Engineering Structures, 31(8), pp: 1707-1723. https://doi.org/10.1016/j.engstruct.2009.02.039.
[5] Ricci, P., De Luca, F. and Verderame, G.M., 2011. 6th April 2009 L’Aquila earthquake, Italy: reinforced concrete building performance. Bulletin of earthquake engineering, 9, pp: 285-305. https://doi.org/10.1007/s10518-010-9204-8.
[6] Romão, X., Costa, A.A., Paupério, E., Rodrigues, H., Vicente, R., Varum, H. and Costa, A., 2013. Field observations and interpretation of the structural performance of constructions after the 11 May 2011 Lorca earthquake. Engineering Failure Analysis, 34, pp: 670-692. https://doi.org/10.1016/j.engfailanal.2013.01.040.
[7] Furtado, A., Rodrigues, H., Arêde, A. and Varum, H., 2021. A review of the performance of infilled rc structures in recent earthquakes. Applied Sciences, 11(13), pp: 5889. https://doi.org/10.3390/app11135889.
[8] Crisafulli, F.J., Carr, A.J. and Park, R., 2000. Analytical modelling of infilled frame structures: A general review. Bulletin of the New Zealand society for earthquake engineering, 33(1), pp: 30-47. https://doi.org/10.5459/bnzsee.33.1.30-47.
[9] Asteris, P.G., Antoniou, S.T., Sophianopoulos, D.S. and Chrysostomou, C.Z., 2011. Mathematical macromodeling of infilled frames: state of the art. Journal of Structural Engineering, 137(12), pp: 1508-1517. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000384.
[10] Nicola, T., Leandro, C., Guido, C. and Enrico, S., 2015. Masonry infilled frame structures: state-of-the-art review of numerical modelling. Earthquakes and structures, 8(1), pp: 225-251. https://doi.org/10.12989/eas.2015.8.1.225.
[11] Di Trapani, F., Macaluso, G., Cavaleri, L. and Papia, M., 2015. Masonry infills and RC frames interaction: literature overview and state of the art of macromodeling approach. European Journal of Environmental and Civil Engineering, 19(9), pp: 1059-1095. https://doi.org/10.1080/19648189.2014.996671.
[12] Personeni, S., Di Pilato, M., Palermo, A. and Pampanin, S., 2008. Numerical investigations on the seismic response of masonry infilled steel frames. In The 14th World Conference on Earthquake Engineering, pp: 12-17.
[13] Huang, X., Zhou, Z., Hua, K., Guo, C., Zhu, D. and Xia, T., 2018. Influence of infill configurations on seismic responses of steel self‐centering moment resisting frames. The Structural Design of Tall and Special Buildings, 27(10), pp: e1474. https://doi.org/10.1002/tal.1474.
[14] Chalabi, R., Yazdanpanah, O. and Dolatshahi, K.M., 2023. Nonmodel rapid seismic assessment of eccentrically braced frames incorporating masonry infills using machine learning techniques. Journal of Building Engineering, 79, pp: 107784. https://doi.org/10.1016/j.jobe.2023.107784.
[15] Wu, J.R. and Di Sarno, L., 2023. A machine-learning method for deriving state-dependent fragility curves of existing steel moment frames with masonry infills. Engineering Structures, 276, pp: 115345. https://doi.org/10.1016/j.engstruct.2022.115345.
[16] Huang, X., Zhou, Z. and Wang, Y., 2021. Investigation of the seismic behaviour of masonry infilled self-centring beam moment frames using a new infill material model. Bulletin of Earthquake Engineering, 19, pp: 4887-4910. https://doi.org/10.1007/s10518-021-01150-9.
[17] Wu, J.R., Di Sarno, L., Freddi, F. and D'Aniello, M., 2022. Modelling of masonry infills in existing steel moment-resisting frames: Nonlinear force-displacement relationship. Engineering Structures, 267, pp: 114699. https://doi.org/10.1016/j.engstruct.2022.114699.
[18] Vamvatsikos, D. and Cornell, C.A., 2005. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information. Earthquake engineering & structural dynamics, 34(13), pp: 1573-1600. https://doi.org/10.1002/eqe.496.
[19] Eads, L., 2013. Seismic collapse risk assessment of buildings: effects of intensity measure selection and computational approach. PhD Dissertation, Stanford University.
[20] Jamshidiha, H.R., Yakhchalian, M. and Mohebi, B., 2018. Advanced scalar intensity measures for collapse capacity prediction of steel moment resisting frames with fluid viscous dampers. Soil Dynamic and Earthquake Engineering, 109, pp: 102-118. https://doi.org/10.1016/j.soildyn.2018.01.009.
[21] Rahgozar, N., Pouraminian, M. and Rahgozar, N., 2021. Reliability-based seismic assessment of controlled rocking steel cores. Journal of Building Engineering, 44, pp: 102623. https://doi.org/10.1016/j.jobe.2021.102623.
[22] Ravichandran, S.S. and Klingner, R.E., 2012. Seismic design factors for steel moment frames with masonry infills: Part 2. Earthquake spectra, 28(3), pp: 1205-1222. https://doi.org/10.1193/1.4000061.
[23] Di Sarno, L. and Wu, J.R., 2020. Seismic assessment of existing steel frames with masonry infills. Journal of Constructional Steel Research, 169, pp: 106040. https://doi.org/10.1016/j.jcsr.2020.106040.
[24] Di Sarno, L., Wu, J.R., Gutiérrez-Urzúa, F., Freddi, F., D'Aniello, M., Kwon, O.S., Bousias, S. and Dolšek, M., 2020. Dynamic response of existing steel frames with masonry infills under multiple earthquakes. In XI International Conference on Structural Dynamics, pp: 3671-3685.
[25] Di Sarno, L. and Wu, J.R., 2021. Fragility assessment of existing low-rise steel moment-resisting frames with masonry infills under mainshock-aftershock earthquake sequences. Bulletin of Earthquake Engineering, 19, pp: 2483-2504. https://doi.org/10.1007/s10518-021-01080-6.
[26] Kazemi, F., Asgarkhani, N. and Jankowski, R., 2023. Probabilistic assessment of SMRFs with infill masonry walls incorporating nonlinear soil-structure interaction. Bulletin of Earthquake Engineering, 21, pp: 503-534. https://doi.org/10.1007/s10518-022-01547-0.
[27] Kazemi, F., Asgarkhani, N. and Jankowski, R., 2024. Enhancing seismic performance of steel buildings having semi-rigid connection with infill masonry walls considering soil type effects. Soil Dynamics and Earthquake Engineering, 177, pp: 108396. https://doi.org/10.1016/j.soildyn.2023.108396.
[28] SAC Joint Venture. 1994. Proceedings of the invitational workshop on steel seismic issues. Report No. SAC, 94-01.‌ Los Angeles, California.
[29] FEMA. 2000. State of the art report on systems performance of steel moment frames subject to earthquake ground shaking. FEMA-355C. Washington, DC: Federal Emergency Management Agency.
[30] ASCE. 2010. Minimum design loads for buildings and other structures. ASCE/SEI 7-10. Reston, Virginia: American Society of Civil Engineers.
[31] McKenna, F., Fenves, G.L. and Scott, M.H., 2015. Open system for earthquake engineering simulation. Berkeley, California: Pacific Earthquake Engineering Research Center. https://opensees.berkeley.edu.
[32] Ibarra, L.F. and Krawinkle, H., 2005. Global collapse of frame structures under seismic excitations. PEER Report 2005-06. Berkeley, California: Pacific Earthquake Engineering Research Center.
[33] Haselton, C.B. and Deierlein, G.G., 2008. Assessing Seismic Collapse Safety of Modern Reinforced Concrete Moment-Frame Buildings. PEER Report 2007-08. Berkeley, California: Pacific Earthquake Engineering Research Center.
[34] Lignos, D.G. and Krawinkler, H., 2011. Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Journal of Structural Engineering, 137(11), pp: 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
[35] Seo, C.Y., Karavasilis, T.L., Ricles, J.M. and Sause, R., 2014. Seismic performance and probabilistic collapse resistance assessment of steel moment resisting frames with fluid viscous dampers. Earthquake engineering & structural dynamics, 43(14), pp: 2135-2154. https://doi.org/10.1002/eqe.2440.
[36] Kitayama, S. and Constantinou, M.C., 2016. Probabilistic collapse resistance and residual drift assessment of buildings with fluidic self‐centering systems. Earthquake Engineering & Structural Dynamics, 45(12), pp: 1935-1953. https://doi.org/10.1002/eqe.2733.
[37] Liberatore, L. and Decanini, L.D., 2011. Effect of infills on the seismic response of high-rise RC buildings designed as bare according to Eurocode 8. Ingegneria sismica, 3, pp: 7-23.
[38] Mohammad Noh, N., Liberatore, L., Mollaioli, F. and Tesfamariam, S., 2017. Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees. Engineering Structures, 150, pp: 599-621. https://doi.org/10.1016/j.engstruct.2017.07.002.
[39] Stylianidis, K.C., 2012. Experimental investigation of masonry infilled R/C frames. The Open Construction & Building Technology Journal, 6, pp: 194-212. http://dx.doi.org/10.2174/1874836801206010194.
[40] Chopra, A.K., 2020. Dynamics of structures: Theory and Applications to Earthquake Engineering. 5th edition. Harlow, Essex: Pearson.
[41] Hashemi, A. and Mosalam, K.M., 2006. Shake‐table experiment on reinforced concrete structure containing masonry infill wall. Earthquake engineering & structural dynamics, 35(14), pp: 1827-1852. https://doi.org/10.1002/eqe.612.
[42] Stavridis, A., Koutromanos, I. and Shing, P.B., 2012. Shake‐table tests of a three‐story reinforced concrete frame with masonry infill walls. Earthquake Engineering & Structural Dynamics, 41(6), pp: 1089-1108. https://doi.org/10.1002/eqe.1174.
[43] Guljaš, I., Penava, D., Laughery, L. and Pujol, S., 2020. Dynamic tests of a large-scale three-story RC structure with masonry infill walls. Journal of earthquake engineering, 24(11), pp: 1675-1703. https://doi.org/10.1080/13632469.2018.1475313.
[44] Di Sarno, L., Freddi, F., D'Aniello, M., Kwon, O.S., Wu, J.R., Gutiérrez-Urzúa, F., Landolfo, R., Park, J., Palios, X. and Strepelias, E., 2021. Assessment of existing steel frames: Numerical study, pseudo-dynamic testing and influence of masonry infills. Journal of Constructional Steel Research, 185, pp: 106873. https://doi.org/10.1016/j.jcsr.2021.106873.
[45] Jeon, J.S., Park, J.H. and DesRoches, R., 2015. Seismic fragility of lightly reinforced concrete frames with masonry infills. Earthquake Engineering & Structural Dynamics, 44(11), pp: 1783-1803. https://doi.org/10.1002/eqe.2555.
[46] Vamvatsikos, D. and Cornell, C.A., 2002. Incremental dynamic analysis. Earthquake engineering & structural dynamics, 31(3), pp: 491-514. https://doi.org/10.1002/eqe.141.
[47] FEMA. 2000. Prestandard and commentary for the seismic rehabilitation of buildings. FEMA 356. Washington, DC: Federal Emergency Management Agency.
[48] Malhotra, P.K., 2021. Seismic analysis of structures and equipment. Sharon, Massachusetts: Springer.
[49] FEMA. 2009. Quantification of Building Seismic Performance Factors. FEMA P695. Washington, DC: Federal Emergency Management Agency.
[50] Yakhchalian, M., Ghodrati Amiri, G. and Nicknam, A., 2014. A new proxy for ground motion selection in seismic collapse assessment of tall buildings. The Structural Design of Tall and Special Buildings, 23(17), pp: 1275-1293. https://doi.org/10.1002/tal.1143.
[51] Kazemi, F. and Jankowski, R., 2023. Seismic performance evaluation of steel buckling-restrained braced frames including SMA materials. Journal of Constructional Steel Research, 201, pp: 107750. https://doi.org/10.1016/j.jcsr.2022.107750.
[52] USGS. United States Geological Survey. Accessed 2023. https://earthquake.usgs.gov/hazards/interactive/.
[53] Yahyazadeh, A. and Yakhchalian, M., 2018. Probabilistic residual drift assessment of SMRFs with linear and nonlinear viscous dampers. Journal of Constructional Steel Research, 148, pp: 409-421. https://doi.org/10.1016/j.jcsr.2018.05.031.
[54] Roshanfekr Rad, Z., Ghobadi, M.S. and Yakhchalian, M., 2019. Probabilistic seismic collapse and residual drift assessment of smart buildings equipped with shape memory alloy connections. Engineering Structures, 197, pp: 109375. https://doi.org/10.1016/j.engstruct.2019.109375.
[55] Yakhchalian, M. and Yakhchalian, M., 2023. Gravity framing and composite action effects on residual drifts of steel SMFs. Journal of Constructional Steel Research, 211, pp: 108167. https://doi.org/10.1016/j.jcsr.2023.108167.