مقاوم‌سازی و بررسی تاثیر آرایش‌های مختلف نوارهای FRP بر رفتار دیوار بنایی در برابر بار انفجار

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 گروه سازه، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران
2 استادیار، مجتمع دانشگاهی پدافند غیرعامل، دانشگاه صنعتی مالک اشتر، تهران، ایران
چکیده
سازه‌های بنایی پتانسیل خرابی شدیدی در انفجار داشته و با توجه به افزایش حوادث تروریستی، مقاوم‌سازی این ساختمان‌ها ضروری به نظر می‌رسد. در سی سال گذشته، پلیمرهای مسلح‌شده با الیاف (FRP) کاربرد گسترده و مناسبی در امر مقاوم‌سازی و بهبود عملکرد این سازه‌ها داشته‌است. مدل‌سازی به روش اجزا محدود ضمن ایجاد زمینه‌ای برای درک بهتر رفتار دیوارهای بنایی، در پیش‌بینی رفتار این اعضا پس از تقویت مخصوصا در فقدان نتایج آزمایشگاهی بسیار مفید خواهدبود. در این پژوهش، با استفاده از مدل‌سازی عددی در نرم افزار آباکوس، رفتار دیوارهای بنایی تقویت‌شده با ورق‌های FRP در برابر انفجاری با خرج ماده منفجره معادل 150 کیلوگرم TNT در فاصله 5 متری مورد بررسی قرارگرفت و پارامترهای لازم و تاثیرگذار جهت بررسی کاربرد این روش مقاوم‌سازی تحلیل شدند. عرض، ضخامت، مساحت و زاویه چیدمان ورق‌های FRP از پارامترهای موثر بر رفتار دیوارهای بنایی تقویت‌شده به شمار می‌رود. نتایج حاصل از مدل‌سازی نشان می‌دهد که این روش مقاوم‌سازی برای تقویت دیوار بنایی در مقابل انفجار کارامد بوده به‌طوری‌که جابجایی 63 سانتی‌متری مرکز دیوار حداقل 70 درصد و انرژی آن تا 90 درصد نیز کاهش داشته‌است. علاوه بر این مقاوم‌سازی دیوارها با نوارهای افقی در مقایسه با نوارهای عمودی و قطری، عملکرد دیوار را به مقدار بیشتری بهبود می‌بخشد.













ript src="chrome-extension://lopnbnfpjmgpbppclhclehhgafnifija/aiscripts/script-main.js">

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Strengthening and Investigating the Effect of Various FRP Strip Configurations on the Behavior of Masonry Wall Subjected to Blast Loading

نویسندگان English

mahdi yazdani 1
seyed ahmad hoseini 2
1 Department of Structures, Faculty of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
2 Faculty of passive defense, malek ashtar university of technology, iran
چکیده English

So far, the performance of masonry walls against in-plane lateral loads such as earthquake loads has been extensively studied, but less attention has been paid to out-of-plane loads such as explosions. Due to their large surface area, walls endure significant forces during explosions, leading to extensive damage and potentially causing severe financial losses and casualties. Given the increase in terrorist and sabotage attacks, reinforcing these structures seems necessary. In recent years, fiber-reinforced polymers (FRP) have been widely and effectively used in the reinforcement and performance improvement of these structures. Their light weight, high stiffness and high strength, and corrosion resistance are among the properties that have attracted researchers to use these materials. Finite element modeling not only provides a basis for better understanding the behavior of masonry walls but also is very useful in predicting the behavior of these members after reinforcement, especially in the absence of experimental results. In this study, using numerical modeling in ABAQUS software, the behavior of masonry walls reinforced with FRP strips against a blast with an explosive charge equivalent to 150 kg of TNT (the weight of explosive likely to be carried in a sabotage attempt via a vehicle) at a distance of 5 meters was investigated. Lagrangian equations were used to model the mechanical behavior of the structure, and the solver used in this research is an explicit solver to account for the time factor in the software’s integration process. The total time considered for the entire explosion process is 1 second, and the explosive load was applied to the studied structure using the Conwep method. The type of fibers, width, thickness, area, and angle of the FRP strips were important and influential parameters that were examined for the efficiency of this reinforcement method. The modeling results indicate that this reinforcement technique is highly effective in strengthening masonry walls against explosions, as it has reduced the deflection of the wall by at least 70% and its energy by up to 90%. It can also be inferred that an arrangement for reinforcing masonry walls with FRP strips is suitable if it covers the areas prone to damage, which in masonry walls are the mortar joints between the bricks. Therefore, the horizontal arrangement shows better performance compared to the vertical and diagonal arrangements. Similarly, reinforcing 100% of the wall area performs much better than reinforcing 50% and 25% of the wall area, but it is not economically acceptable. In general, similar to structural elements, non-structural elements can also exhibit plastic behavior in critical situations, preventing the collapse of these elements due to the absorbed energy. Therefore, walls with higher plastic energy show better behavior against explosive loads. Additionally, based on the hysterical displacement and kinetic energy diagrams of the wall, it can be seen that the behavior of reinforced walls is oscillatory, while the behavior of unreinforced walls is noticeably pulsating. Finally, the optimal arrangement of FRP strips proposed for reinforcing masonry walls against explosions in this study is the use of CFRP strips horizontally, with a thickness of 1 mm, a width of 24 cm, and covering 50% of the surface area; This configuration successfully decreased the deflection of the wall from 63.1 cm to 7.7 cm and damped approximately 13% of the blast wave energy.
ript src="chrome-extension://lopnbnfpjmgpbppclhclehhgafnifija/aiscripts/script-main.js">

کلیدواژه‌ها English

masonry wall
Explosion
Strengthening
FRP composite
Numerical Modeling
[1] Furtado, A., Rodrigues, H., Arêde, A. and Varum, H., 2016. Experimental evaluation of out-of-plane capacity of masonry infill walls. Engineering Structures 111: 48-63.
[2] Shamim, S., Ahmad, S. and Khan, R.A., 2020. An investigation on response of blast load on masonry structure. In Smart Cities—Opportunities and Challenges: Select Proceedings of ICSC 2019. (527-537.
[3] Shamim, S., Ahmad, S. and Khan, R.A., 2023. Numerical study on dynamic response of hollow and cavity type clay brick masonry infill panels subjected to blast loading. Engineering Failure Analysis 146: 107104.
[4] Badshah, E., Naseer, A., Ashraf, M. and Ahmad, T., 2021. Response of masonry systems against blast loading. Defence Technology 17.4: 1326-1337.
[5] Chiquito, M., López, L.M., Castedo, R., Pérez-Caldentey, A. and Santos, A.P., 2019. Behaviour of retrofitted masonry walls subjected to blast loading: Damage assessment. Engineering Structures 201: 109805.e
[6] Shamim, S., Khan, R.A. and Ahmad, S., 2022, May. Fragility analysis of masonry wall subjected to blast loading. In Structures 39: 1016-1030.
[7] Hatfield, J.E. and Davidson, J.S., 2022. Fragmentation and hazard analysis of brittle materials under far-field blast loading. Advances in Structural Engineering 25.7: 1535-1548.
[8] Dong, Z., Ji, J.H., Liu, Z.Q., Wu, C., Wu, G., Zhu, H. and Zhang, P., 2023. I-shaped ECC/UHPC composite beams reinforced with steel bars and BFRP sheets. Sustainable Structures 3.1: 000022.
[9] Yan, J., Liu, Y., Xu, Z., Li, Z. and Huang, F., 2020. Experimental and numerical analysis of CFRP strengthened RC columns subjected to close-in blast loading. International Journal of Impact Engineering 146: 103720.
[10] Li, H., Chen, B., Fei, B., Li, H., Xiong, Z., Lorenzo, R., Fang, C. and Ashraf, M., 2022. Mechanical properties of aramid fiber reinforced polymer confined laminated bamboo lumber column under cyclic loading. European Journal of Wood and Wood Products, 80.5: 1057-1070.
[11] Elshazli, M.T., Saras, N. and Ibrahim, A., 2022. Structural response of high strength concrete beams using fiber reinforced polymers under reversed cyclic loading. Sustain. Struct 2.2: 000018.
[12] Liang, R. and Hota, G., 2021. Development and evaluation of load-bearing fiber reinforced polymer composite panel systems with tongue and groove joints. Sustainable Structures 1.2.
[13] Olonisakin, K., He, S., Yang, Y., Wang, H., Li, R. and Yang, W., 2022. Influence of stacking sequence on mechanical properties and moisture absorption of epoxy-based woven flax and basalt fabric hybrid composites. Sustain. Struct 2: 16.
[14] Hosseini, M., Jian, B., Li, H., Yang, D., Wang, Z., Feng, Z., Shen, F., Zhang, J., Lorenzo, R., Corbi, I. and Corbi, O., 2022. A Review of Fibre Reinforced Polymer (FRP) reinforced concrete composite column members modelling and analysis techniques. Journal of Renewable Materials 10.12: 3243-3262.
[15] Wilt, J., Liang, R., GangaRao, H. and Mostoller, J., 2023. Structural responses of FRP sheet piles under cantilever loading. Sustainable Structures 3.1.
[16] Jacques, E., 2011. Blast retrofit of reinforced concrete walls and slabs. University of Ottawa (Canada).
[17] Orton, S.L., Chiarito, V.P., Minor, J.K. and Coleman, T.G., 2014. Experimental testing of CFRP-strengthened reinforced concrete slab elements loaded by close-in blast. Journal of Structural Engineering 140.2: 04013060.
[18] Mutalib, A.A. and Hao, H., 2011. Numerical analysis of FRP-composite-strengthened RC panels with anchorages against blast loads. Journal of Performance of Constructed Facilities 25.5: 360-372.
[19] Elanchezhian, C., Ramnath, B.V. and Hemalatha, J., 2014. Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates and temperatures. Procedia Materials Science 6: 1405-1418.
[20] Yavartanoo, F. and Kang, T.H.K., 2022. Retrofitting of unreinforced masonry structures and considerations for heritage-sensitive constructions. Journal of Building Engineering 49: 103993.
[21] Tabatabaei, Z.S., Volz, J.S., Baird, J., Gliha, B.P. and Keener, D.I., 2013. Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading. International journal of impact engineering 57: 70-80.
[22] Hosseini, M., Bingyu, J., Jian, Z., Li, H. and Lorenzo, R., 2023. Numerical Study on the behaviour of Hybrid FRPs Reinforced RC Slabs Subjected to Blast Loads. Journal of Renewable Materials 11.9: 1-15.
[23] Reifarth, C., Castedo, R., Santos, A.P., Chiquito, M., López, L.M., Pérez-Caldentey, A., Martínez-Almajano, S. and Alañon, A., 2021. Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads. International Journal of Impact Engineering 156: 103939.
[24] Gemi, L., Madenci, E., Özkılıç, Y.O., Yazman, Ş. and Safonov, A., 2022. Effect of fiber wrapping on bending behavior of reinforced concrete filled pultruded GFRP composite hybrid beams. Polymers 14.18: 3740.
[25] Aksoylu, C., Yazman, Ş., Özkılıç, Y.O., Gemi, L. and Arslan, M.H., 2020. Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite. Composite Structures 249: 112561.
[26] Abdulla, K.F., Cunningham, L.S. and Gillie, M., 2017. Simulating masonry wall behaviour using a simplified micro-model approach. Engineering Structures 151: 349-365.
[27] D'Altri, A.M., de Miranda, S., Castellazzi, G. and Sarhosis, V., 2018. A 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry panels. Computers & Structures 206: 18-30.
[28] Shin, D.K., Kim, H.C. and Lee, J.J., 2014. Numerical analysis of the damage behavior of an aluminum/CFRP hybrid beam under three-point bending. Composites Part B: Engineering 56: 397-407.
[29] KARLOS, V. and SOLOMOS, G., 2013. Calculation of Blast Loads for Application to Structural Components. Administrative Arrangement No JRC 32253-2011 with DG-HOME Activity A5-Blast Simulation Technology Development.
[30] Børvik, T., Hanssen, A.G., Langseth, M. and Olovsson, L., 2009. Response of structures to planar blast loads–A finite element engineering approach. Computers & Structures 87: 507-520.
[31] Motovali Emami, S.M., Mohammadi, M. and Lourenço: B., 2017. Equivalent diagonal strut method for masonry walls in pinned connection and multi-bay steel frames. Journal of Seismology and Earthquake Engineering 19.4: 299-311.
[32] Raza, A., Ali, B., Nawaz, M.A. and Ahmed, I., 2020, October. Structural performance of FRP-RC compression members wrapped with FRP composites. In Structures 27: 1693-1709.
[33] Chiquito, M., Castedo, R., Santos, A.P., López, L.M. and Pérez-Caldentey, A., 2021. Numerical modelling and experimental validation of the behaviour of brick masonry walls subjected to blast loading. International Journal of Impact Engineering 148: 103760.
[34] Szyniszewski, S. and Krauthammer, T., 2012. Energy flow in progressive collapse of steel framed buildings. Engineering Structures 42: 142-153.