انتخاب بهترین عامل گیرنده اکسیژن در فرآیند حذف نیترات در دیواره‌های بیولوژیکی فعال نفوذپذیر

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس
چکیده
یکی از روش‌های حذف اکسیژن محلول از محیط آب به منظور انجام واکنش‌های دنیتریفیکاسیون استفاده از ترکیبات گیرنده اکسیژن (OCC) است. در این تحقیق تاثیر مقادیر مختلف چهار ماده ZVI، nZVI، NaS2O₃ و Na2S2O5 به عنوان OCC به منظور استفاده در حذف نیترات از آب آلوده در فرایند PRBB در مقیاس آزمایشگاهی مورد بررسی قرار گرفت. براساس نتایج بدست آمده، این مواد علاوه بر کاهش اکسیژن محلول، بر پارامترهایی چون pH محیط، جمعیت میکروبی، کدورت، ماندگاری DO، ORP و حتی حذف نیترات تاثیرگذار بوده و آثار مثبت و منفی از خود بر جای می‌گذارند. در این پژوهش پس از انجام آزمایش‌ها و با در نظر گرفتن نظر متخصصین، میزان اثرگذاری کیفی هر یک از پارامترها به صورت کمی احصا و بهترین ماده OCC از طریق فرآیند تحلیل سلسله مراتبی (AHP) انتخاب شد. نتایج به دست آمده از آزمایش‌های پیمانه‌ای نشان داد که اولویت انتخاب OCC از سه جنبه فنی، اقتصادی و زیست‌محیطی به ترتیب مربوط به ZVI،Na2S2O3 ، Na2S2O5 و nZVI می‌باشد. بر اساس نتایج حاصل با استفاده از ZVI (بهترین OCC) به میزان mg 750 به ازای هر لیتر آب مورد آزمایش در مدت زمان تقریبی 500 دقیقه میزان DO آب از 7 به 05 /0 میلی­گرم در لیتر کاهش یافته و در محدوده ایده‌آل برای فرآیند دنیتریفیکاسیون قرار گرفت. پس از انجام واکنش‌های ماندگاری نیز مشخص شد، این ماده خاصیت اکسیژن زدایی خود را در مدت زمان طولانی‌تری در مقایسه با سایر ترکیبات مورد استفاده حفظ نموده است. همچنین در طی آزمایش­ها pH محیط در محدوده مناسب برای انجام واکنش‌های دنیتریفیکاسیون ( 7) قرار داشت. براساس نتایج به دست آمده میزان ZVI مورد استفاده در افزایش جمعیت میکروبی و راندمان حذف نیترات نیز دارای تاثیر مثبت بود.



کلیدواژه‌ها

موضوعات


عنوان مقاله English

Selection of the Most Optimal Oxygen Capturing Compound in the Nitrate Removal Process Using Permeable Reactive Bio Barriers

نویسندگان English

Mohammad Ali Hosseinian
Nader Mokhtarani
Hossein Ganjidoust
Civil and Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
چکیده English

Mineral anions are among the most important toxic substances harmful to humans and animals even in low concentrations. Nitrate ions are considered important surface and groundwater pollutants for their high solubility in water. Nitrate is converted to nitrite and N-nitroso in the human body through certain reactions. N-nitroso combinations are considered carcinogenic and the primary cause of methemoglobinemia diseases. The existing nitrate in water resources is not easily separated for it is highly soluble and therefore the methods usually used for this purpose are very costly. Various methods can be used to remove or reduce the concentration of nitrate. Reverse osmosis, electrodialysis, electrocoagulation, ion exchange, and membrane processes are among the physicochemical methods of nitrate purification. Among the types of nitrate purification methods, biological processes with relatively high efficiency, the possibility of complete removal of the pollutant, and less harmful effects on the environment, are some of the most suitable options for the decomposition and removal of nitrate from water and groundwater. In a situation where the contaminated area is wide and it is not possible to pump water due to economic reasons or the large volume, treatment using in-situ methods will be a more suitable option. One of the types of in-situ biological treatment processes is the use of the permeable reactive bio-barrier (PRBB) method. PRBB is one of the novel and reliable methods used for in-situ groundwater remediation. A PRBB is an emplacement of reactive media in the sub-surface designed to intercept a contaminated plume, provide a flow path through the reactive media, and transform the contaminant(s) into environmentally acceptable forms to attain remediation concentration goals down the gradient of the barrier. PRBB can degrade nitrate at a high rate under anaerobic conditions. In this research, different concentrations of four chemical substances including ZVI, nZVI, NaS2O3, and Na2S2O5 were used as Oxygen Capturing Compounds (OCC) in the removal of nitrate from polluted water in the PRBB process on a laboratory scale. Based on the obtained results, these substances affect the parameters of DO, pH, MLSS, turbidity, nitrate concentration, durability of DO, and ORP. After laboratory tests and taking into the opinion of experts, the qualitative effect of each parameter was calculated quantitatively and through the analytical hierarchy process (AHP), the best oxygen-capturing compound was selected. The results obtained from AHP (with an inconsistency ratio of 0.063), revealed that the priority of choosing OCC from three technical, economic, and environmental aspects is related to the concentrations of 750 mg/l ZVI, 240 mg/l Na2S2O3, 85 mg/l Na2S2O5 and 550 mg/l nZVI respectively. The concentration of 750 mg/l ZVI (the best OCC) during the experiments was able to reduce the DO from 7 to 0.05 mg/l in approximately 500 minutes and within the ideal range of the denitrification process (DO<0.05 mg/l). In addition, after the durability of DO tests, it was found that this substance has maintained its deoxygenation properties for longer than other used compounds. Also, based on the results, the concentration of 750 mg/l ZVI had a positive effect on the increase of MLSS and removal of nitrate.

کلیدواژه‌ها English

Analytical hierarchy process
Oxygen Capturing Compound
Nitrate
Permeable Reactive Bio Barrier
1. Ganesan, P., R. Kamaraj, and S. Vasudevan, Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2013. 44(5): p. 808-814.
2. Kassaee, M.Z., et al., Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chemical Engineering Journal, 2011. 166(2): p. 490-495.
3. Zendehbad, M., et al., Nitrate in groundwater and agricultural products: intake and risk assessment in northeastern Iran. Environmental Science and Pollution Research, 2022. 29(52): p. 78603-78619.
4. Darvishmotevalli, M., et al., Evaluation of carcinogenic risks related to nitrate exposure in drinking water in Iran. MethodsX, 2019. 6: p. 1716-1727.
5. WHO, Nitrate and Nitrite in Drinking-Water; Background Document for Development of WHO Guidelines for Drinking-Water Quality. World Health Organization, 2011. 23.
6. Girma, G., Microbial Bioremediation of some Heavy Metals in Soils: An updated review. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 2015. 7(1): p. 29-45.
7. Latha, A., Reddy, S.S., Review on bioremediation – Potential tool for removing environmental pollution. International Journal of Basic and Applied Chemical Sciences, 2013. 3(3): p. 21-33.
8. AQUAREHAB, 2013. Biobarrier: Generic guideline.
9. DES. 2006. “Nitrate and Nitrite: Health Information Summary: Health Information Summary; Environmental Fact Sheet.” ARD-EHP-16. New Hampshire Department of Environmental Services.
10. Scherer, M.M., et al., Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean-up. Critical Reviews in Environmental Science and Technology, 2000. 30(3): p. 363-411.
11. Wilson, R.D., D.M. Mackay, and K.M. Scow, In Situ MTBE Biodegradation Supported by Diffusive Oxygen Release. Environmental Science & Technology, 2002. 36(2): p. 190-199.
12. Careghini, A., S. Saponaro, and E. Sezenna, Biobarriers for groundwater treatment: a review. Water Sci Technol, 2013. 67(3): p. 453-68.
13. Freidman, B.L., et al., Biofilm communities and biodegradation within permeable reactive barriers at fuel spill sites in Antarctica. International Biodeterioration & Biodegradation, 2017. 125: p. 45-53.
14. Kwon, K., et al., Simultaneous biodegradation of carbon tetrachloride and trichloroethylene in a coupled anaerobic/aerobic biobarrier. Journal of Hazardous Materials, 2016. 313: p. 60-67.
15. Lee, T.H., et al., Emulsified polycolloid substrate biobarrier for benzene and petroleum-hydrocarbon plume containment and migration control – A field-scale study. Science of The Total Environment, 2019. 666: p. 839-848.
16. Liu, S.-J., et al., An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater. Water Research, 2013. 47(16): p. 5977-5985.
17. Cauvain, S.P., Chapter 13 - The use of redox agents in breadmaking, in Breadmaking (Third Edition), S.P. Cauvain, Editor. 2020, Woodhead Publishing. p. 391-413.
18. Wieser, H., 18 - The use of redox agents in breadmaking, in Breadmaking (Second Edition), S.P. Cauvain, Editor. 2012, Woodhead Publishing. p. 447-469.
19. Setiawan, W.A., et al., Assesing efectiveness of sodium metabisulfite for treatment of coal tar wastewater. IOP Conference Series: Earth and Environmental Science, 2018. 212(1): p. 012010.
20. Salama, A.E., Effective Sodium Metabisulfite, HCl, Sulfur and Distilled Water for the Removal of Pb, Zn and Cr Contaminated Soil in t(Liu, 2022 #47)he Columns Method. Agricultural Sciences, 2019. 10(07): p. 882-892.
21. Choi, J.-H., Y.-H. Kim, and S.J. Choi, Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: Laboratory studies. Chemosphere, 2007. 67(8): p. 1551-1557.
22. Lee, T.H., et al., Application of an emulsified polycolloid substrate biobarrier to remediate petroleum-hydrocarbon contaminated groundwater. Chemosphere, 2019. 219: p. 444-455.
23. Folch, A., et al., Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. Journal of Hazardous Materials, 2013. 262: p. 554-560.
24. Silva, B., et al., Rehabilitation of a complex industrial wastewater containing heavy metals and organic solvents using low cost permeable bio-barriers – From lab-scale to pilot-scale. Separation and Purification Technology, 2021. 263: p. 118381.
25. Mossa Hosseini, S., B. Ataie-Ashtiani, and M. Kholghi, Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination, 2011. 276(1): p. 214-221.
26. Rao, S. and R. Malini, Use of permeable reactive barrier to mitigate groundwater nitrate contamination from on-site sanitation. Journal of Water, Sanitation and Hygiene for Development, 2015. 5: p. 336.
27. Liu, G. and J. Wang, Modeling effects of DO and SRT on activated sludge decay and production. Water Research, 2015. 80: p. 169-178.
28. Yu, D. and X. Hong, A theme evolution and knowledge trajectory study in AHP using science mapping and main path analysis. Expert Systems with Applications, 2022. 205: p. 117675.
29. Sreenivasan, A., et al., Mapping analytical hierarchy process research to sustainable development goals: Bibliometric and social network analysis. Heliyon, 2023. 9(8): p. e19077.
30. Crampon, M., et al., Degradation of tetrachloroethylene by zero valent iron nanoparticles in the presence of a natural groundwater bacterial biofilm in a sandy porous media. Heliyon, 2021. 7(1): p. e05854.
31. Liu, H.-Y., et al., Interaction of tetrahydrofuran and methyl tert-butyl ether in waste gas treatment by a biotrickling filter bioaugmented with Piscinibacter caeni MQ-18 and Pseudomonas oleovorans DT4. Chemosphere, 2022. 286: p. 131552.
32. Liu, S., et al., In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier. Environmental Science and Pollution Research, 2017. 24(34): p. 26615-26622.
33. Zolla, V., et al., Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier. J Environ Qual, 2009. 38(3): p. 897-908.
34. Gizaw, A., et al., A comprehensive review on nitrate and phosphate removal and recovery from aqueous solutions by adsorption. Journal of Water Supply: Research and Technology-Aqua, 2021. 70.
35. Kumar, N.S. and S. Goel, Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC)process. Journal of Hazardous Materials, 2010. 173(1): p. 528-533.
36. GES. 2000. Lecture supplement 4: oxidation and reduction (redox) reactions. soil chemistry.
37. Luccarini, L., et al., Monitoring denitrification by means of pH and ORP in continuous-flow conventional activated sludge processes. Desalination and water treatment, 2017. 61: p. 319-325.
38. Flury, B., et al., Assessment of Long-Term Performance and Chromate Reduction Mechanisms in a Field Scale Permeable Reactive Barrier. Environmental Science & Technology, 2009. 43(17): p. 6786-6792.
39. Hwang, Y.-H., D.-G. Kim, and H.-S. Shin, Mechanism study of nitrate reduction by nano zero valent iron. Journal of Hazardous Materials, 2011. 185(2): p. 1513-1521.
40. Ludwig, R.D., et al., Treatment of Arsenic, Heavy Metals, and Acidity Using a Mixed ZVI-Compost PRB. Environmental Science & Technology, 2009. 43(6): p.1970-1976.
41. Phillips, D.H., et al., Ten Year Performance Evaluation of a Field-Scale Zero-Valent Iron Permeable Reactive Barrier Installed to Remediate Trichloroethene Contaminated Groundwater. Environmental Science & Technology, 2010. 44 (10): p. 3861-3869.
42. Chirila, N., Remarks on Recent Developments in the Chemical Oxido-reduction Reaction Used in Treat the Wastewater. Procedia Technology, 2014. 12: p. 621-627.
43. Liu, Y., X. Zhang, and J. Wang, A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism. Chemosphere, 2022. 291: p. 132728.