[1] M. Salehi, M. Bayat, M. Saadat, M. Nasri, Experimental Study on Mechanical Properties of Cement-Stabilized Soil Blended with Crushed Stone Waste, KSCE Journal of Civil Engineering 25 (2021) 1974–1984. https://doi.org/10.1007/s12205-021-0953-5.
[2] S. Hadi Sahlabadi, M. Bayat, M. Mousivand, M. Saadat, Freeze–Thaw Durability of Cement-Stabilized Soil Reinforced with Polypropylene/Basalt Fibers, Journal of Materials in Civil Engineering 33 (2021) 04021232. https://doi.org/10.1061/(asce)mt.1943-5533.0003905.
[3] J.J.A. Baldovino, R.L.S. Izzo, J.L. Rose, M.D.I. Domingos, Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization, Construction and Building Materials 271 (2021) 121874. https://doi.org/10.1016/j.conbuildmat.2020.121874.
[4] M.E. Al-Atroush, T.A. Sebaey, Stabilization of expansive soil using hydrophobic polyurethane foam: A review, Transportation Geotechnics 27 (2021) 100494. https://doi.org/10.1016/j.trgeo.2020.100494.
[5] M. Syed, A. GuhaRay, S. Agarwal, A. Kar, Stabilization of Expansive Clays by Combined Effects of Geopolymerization and Fiber Reinforcement, Journal of The Institution of Engineers (India): Series A 101 (2020) 163–178. https://doi.org/10.1007/s40030-019-00418-3.
[6] M. Saadat, M. Bayat, Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR), Geomechanics and Geoengineering 17 (2022) 80–91. https://doi.org/10.1080/17486025.2019.1699668.
[7] A. Saygili, M. Dayan, Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers, Cold Regions Science and Technology 161 (2019) 107–114. https://doi.org/10.1016/j.coldregions.2019.03.010.
[8] B.A. Chethan, A.U. Ravi Shankar, Strength and Durability Characteristics of Cement and Class F Fly Ash-Treated Black Cotton Soil, Indian Geotechnical Journal 51 (2021) 1121–1133. https://doi.org/10.1007/s40098-020-00488-2.
[9] X. Yang, J. Wei, J. Liang, H. Rong, B. Wu, G. Zhang, S. Zhou, Corrosion Characteristics of Cement-Stabilized Crushed Stone under Vibrational Effects, J. Mater. Civ. Eng. 35 (2023) 04023092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004733.
[10] M.R. Yabaluie Khamesluei, M. Bayat, M. Mousivand, M.A. Nozari, Effect of zeolite replacement and tyre fibre inclusions on geotechnical properties of cement- or lime-stabilised sand, Geomechanics and Geoengineering 0 (2024) 1–16. https://doi.org/10.1080/17486025.2024.2326087.
[11] Z. Wang, G. Mei, Dynamic Properties of Rubber Cement Stabilized Soil Based on Resonant Column Tests, Marine Georesources & Geotechnology 30 (2012) 333–346. https://doi.org/10.1080/1064119X.2011.631693.
[12] M. Ghasemi, M. Bayat, M. Ghasemi, Experimental Study on Mechanical Behavior of Sand Improved by Polyurethane Foam, Exp Tech (2023). https://doi.org/10.1007/s40799-023-00633-5.
[13] X. Cao, L. Lee, T. Widya, C.M.- Polymer, U. 2005, Polyurethane/clay nanocomposites foams: processing, structure and properties, Polymer 46 (2005) 775–783.
[14] J.J. Espadas-Escalante, F. Avilés, Anisotropic compressive properties of multiwall carbon nanotube/polyurethane foams, Mechanics of Materials 91 (2015) 167–176. https://doi.org/10.1016/j.mechmat.2015.07.006.
[15] C.-S. Tang, D.-Y. Wang, Y.-J. Cui, B. Shi, J. Li, Tensile Strength of Fiber-Reinforced Soil, J. Mater. Civ. Eng. 28 (2016) 04016031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001546.
[16] M. Eshaghzadeh, M. Bayat, R. Ajalloeian, S.M. Hejazi, Mechanical behavior of silty sand reinforced with nanosilica-coated ceramic fibers, Journal of Adhesion Science and Technology 35 (2021) 2664–2683. https://doi.org/10.1080/01694243.2021.1898857.
[17] K. Tavakol, M. Bayat, B. Nadi, R. Ajalloeian, Combined Influences of Cement, Rice Husk Ash and Fibre on the Mechanical Characteristics of a Calcareous Sand, KSCE J Civ Eng (2023). https://doi.org/10.1007/s12205-023-0695-7.
[18] H.R. Razeghi, A.S. Rad, Influence of Fiber Reinforcement on the Ultrasonic P-Wave Velocity and Unconfined Compressive Strength of Cemented Clay, Int. J. of Geosynth. and Ground Eng. 10 (2024) 7. https://doi.org/10.1007/s40891-023-00516-0.
[19] E.R. Sujatha, S. Mahalakshmi, G. Kannan, Potential of fibre reinforced and cement stabilized fibre reinforced soil blocks as sustainable building units, Journal of Building Engineering 78 (2023) 107733. https://doi.org/10.1016/j.jobe.2023.107733.
[20] Y. Shen, Y. Tang, J. Yin, M. Li, T. Wen, An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement, Construction and Building Materials 294 (2021) 123537.
[21] S. Dhar, M. Hussain, The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil, Road Materials and Pavement Design 20 (2019) 1757–1778. https://doi.org/10.1080/14680629.2018.1468803.
[22] M. Syed, A. GuhaRay, S.K. Chukka, S. Ahmad, A Laboratory Investigation and Numerical Modeling on Fiber Reinforced Lime and Alkaline Binder Stabilized Pavement Subgrade Soil, Case Studies in Construction Materials (2024) e03000.
[23] A. Hosseini, S.M. Haeri, S. Mahvelati, A. Fathi, Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils, Journal of Rock Mechanics and Geotechnical Engineering 11 (2019) 1055–1065.
[24] A. Davoodi, M. Aboutalebi Esfahani, M. Bayat, S.E. Mohammadyan-Yasouj, Evaluation of performance parameters of cement mortar in semi-flexible pavement using rubber powder and nano silica additives, Construction and Building Materials 302 (2021) 124166. https://doi.org/10.1016/j.conbuildmat.2021.124166.
[25] A. Davoodi, M. Aboutalebi Esfahani, M. Bayat, S.E. Mohammadyan-Yasouj, A. Rahman, Influence of nano-silica modified rubber mortar and EVA modified porous asphalt on the performance improvement of modified semi-flexible pavement, Construction and Building Materials 337 (2022) 127573. https://doi.org/10.1016/j.conbuildmat.2022.127573.
[26] K. Boschi, C.G. Di Prisco, D. Grassi, G. Modoni, E. Salvatore, Nanosilica Grout Permeation in Sand: Experimental Investigation and Modeling, J. Geotech. Geoenviron. Eng. 150 (2024) 04023129. https://doi.org/10.1061/JGGEFK.GTENG-11436.
[27] J. Karimiazar, E. Sharifi Teshnizi, M. Mirzababaei, M. Mahdad, R. Arjmandzadeh, California Bearing Ratio of a Reactive Clay Treated with Nano-Additives and Cement, J. Mater. Civ. Eng. 34 (2022) 04021431. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004028.
[28] M. Jafarian Barough, S. Çelik, M. Oltulu, Investigation into the Effect of Nanomaterial Injection on Improving the Geotechnical Properties of Granular Soils, Iran J Sci Technol Trans Civ Eng 46 (2022) 3163–3179. https://doi.org/10.1007/s40996-021-00785-7.
[29] L. Tang, Z. Wang, X. Zhang, X. Chen, J. Luo, Y. Wang, Influence of rheological parameters on cement slurry penetration characteristics of novel oscillating grouting technology, Construction and Building Materials 409 (2023) 133999. https://doi.org/10.1016/j.conbuildmat.2023.133999.
[30] J. Kumar, R.K. Verma, A.K. Mondal, Taguchi- Grey Theory Based Harmony Search Algorithm (GR-HSA) for Predictive Modeling and Multi-Objective Optimization in Drilling of Polymer Composites, Experimental Techniques 45 (2021) 531–548. https://doi.org/10.1007/s40799-020-00428-y.
[31] I. Ud Din, P. Hao, S. Panier, K.A. Khan, M. Aamir, G. Franz, K. Akhtar, Design of a New Arcan Fixture for In-plane Pure Shear and Combined Normal/Shear Stress Characterization of Fiber Reinforced Polymer Composites, Experimental Techniques 44 (2020) 231–240. https://doi.org/10.1007/s40799-019-00353-9.
[32] Y. Huan, Y.Q. Shao, Y.J. Dai, Y.Q. Liu, T.Y. Wang, T.H. Zhang, M.H. Liu, Experimental Study of the Mechanical Properties of a Novel Supramolecular Polymer Filament Using a Microtensile Tester Based on Electronic Balance, Experimental Techniques 40 (2016) 737–742. https://doi.org/10.1007/s40799-016-0074-0.
[33] I. Golpazir, A. Ghalandarzadeh, M.K. Jafari, M. Mahdavi, Dynamic properties of polyurethane foam-sand mixtures using cyclic triaxial tests, Construction and Building Materials 118 (2016) 104–115. https://doi.org/10.1016/j.conbuildmat.2016.05.035.
[34] A. Samimi, S. Zarinabadi, Application solid polyurethane as coating in oil and gas pipelines, CHISA 2012 - 20th International Congress of Chemical and Process Engineering and PRES 2012 - 15th Conference PRES 1 (2012).
[35] M.M. Shokrieh, A. Saeedi, M. Chitsazzadeh, Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites, Journal of Nanostructure in Chemistry 3 (2013). https://doi.org/10.1186/2193-8865-3-20.
[36] Z. Zhou, X. Du, S. Wang, Strength for Modified Polyurethane with Modified Sand, Geotechnical and Geological Engineering 36 (2018) 1897–1906. https://doi.org/10.1007/s10706-017-0424-4.
[37] Y. Zhang, Y. Qi, Z. Zhang, Synthesis of PPG-TDI-BDO polyurethane and the influence of hard segment content on its structure and antifouling properties, Progress in Organic Coatings 97 (2016) 115–121. https://doi.org/10.1016/j.porgcoat.2016.04.002.
[38] Q. Chen, R. Yu, Y. Li, G. Tao, S. Nimbalkar, Cyclic stress-strain characteristics of calcareous sand improved by polyurethane foam adhesive, Transportation Geotechnics 31 (2021) 100640. https://doi.org/10.1016/j.trgeo.2021.100640.
[39] M.M. Abdelnaeem, F. Hassona, Characterization of polyurethane foam conditioned sand, Journal of Advanced Engineering Trends 42 (2023) 199–218.
[40] J. Liu, Z. Chen, Z. Song, Y. Bai, W. Qian, J. Wei, D.P. Kanungo, Tensile behavior of polyurethane organic polymer and polypropylene fiber-reinforced sand, Polymers 10 (2018) 499.
[41] T. Hoang, H. Do, J. Alleman, B. Cetin, A.Y. Dayioglu, Comparative evaluation of freeze and thaw effect on strength of BEICP-stabilized silty sands and cement- and fly ash-stabilized soils, Acta Geotech. 18 (2023) 1073–1092. https://doi.org/10.1007/s11440-022-01612-7.
[42] M. Ghanbari, M. Bayat, Effectiveness of reusing steel slag powder and polypropylene fiber on the enhanced mechanical behavior of cement-stabilized sand, Civ. Eng. Infrastruct. J. (2022). https://doi.org/10.22059/ceij.2021.319310.1742.
[43] M. ShahriarKian, S. Kabiri, M. Bayat, Utilization of Zeolite to Improve the Behavior of Cement-Stabilized Soil, Int. J. of Geosynth. and Ground Eng. 7 (2021) 35. https://doi.org/10.1007/s40891-021-00284-9.
[44] C.C. Qiu, G.Z. Xu, G.Q. Gu, W.Z. Song, D.H. Cao, Uniaxial compression test of cement-solidified dredged slurry columns encased with geogrid, Geosynthetics International (2024) 1–17. https://doi.org/10.1680/jgein.23.00132.
[45] M. Roustaei, J. Pumple, M.T. Hendry, J. Harvey, D. Froese, Effect of freeze-thaw cycles on the macrostructure and failure mechanisms of fiber-reinforced clay using industrial computed tomography, Can. Geotech. J. (2024) cgj-2023-0136. https://doi.org/10.1139/cgj-2023-0136.