مطالعه آزمایشگاهی مقاومت فشاری و پارامترهای مقاومت برشی ماسه بهسازی شده با نانومواد، الیاف بازالت و پلیمر

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری، گروه مهندسی عمران، واحد خوراسگان (اصفهان)، دانشگاه آزاد اسلامی، اصفهان، ایران
2 دانشیار، گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 دانشیار، گروه مهندسی عمران، واحد خوراسگان (اصفهان)، دانشگاه آزاد اسلامی، اصفهان، ایران
چکیده
در حالی که روش‌های سنتی بهسازی خاک با استفاده از سیمان یا آهک به طور گسترده مورد تحقیق قرار گرفته‌اند، اما هنوز درک کاملی از رفتار مکانیکی خاک‌های بهسازی شده با افزودنی های جدید مثل پلیمرها وجود دارد. این مطالعه به بررسی خواص مکانیکی خاک‌های استحکام‌بخشی شده با فوم پلی‌یورتان (PU)، نانوسیلیس و الیاف بازالت می‌پردازد. مقاومت فشاری محصور نشده (UCS) و آزمون برش مستقیم بر روی نمونه‌های بازسازی شده ماسه سیلیسی و کربناته با استفاده از ترکیبات مختلف از این مواد انجام شد. پارامترهای مختلفی از جمله مقدار مواد افزودنی و زمان عمل آوری مورد بررسی قرار گرفتند. یافته‌ها نشان می‌دهند که با افزودن فوم PU، نانوسیلیکا یا ترکیب آنها با الیاف، مقاومت فشاری بدون و پارامترهای مقاومت برشی به طور قابل توجهی افزایش می‌یابد. به ویژه، ترکیب PU و الیاف بازالت عملکردی بسیار امیدبخش در بهبود رفتار مکانیکی ارائه می‌دهد، به‌ویژه برای زمان‌های عمل آوری کوتاه که می­تواند در پروژه هایی که زمان اهمیت بالایی دارد، مفید واقع شود. همچنین، شکل گسیحتگی نمونه­ها و ساختار میکروسکوپی نمونه­ها نیز مورد بررسی قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Study of Compressive Strength and Shear Strength Parameters of Treated Sand with Nanomaterial, Basalt Fiber and Polymer

نویسندگان English

Sadegh Shahidi 1
Meysam Bayat 2
Sayed Alireza Zarei 3
1 PhD Student, Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 دانشیار، گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 Associate Professor, Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده English

Soil stabilization techniques have traditionally relied on cement or lime, yet there remains a significant knowledge gap regarding the mechanical behavior of soil treated with innovative materials. Addressing this gap, this study delves into the mechanical properties of soil stabilized with polyurethane (PU) foam, nano-silica, and basalt fiber. Through rigorous experimentation, unconfined compressive strength (UCS) and direct shear tests were conducted on reconstituted silica and calcareous samples, each treated with various combinations of these additives. A comprehensive examination of parameters such as additive content and curing time was undertaken to elucidate their effects. The results unveiled a noteworthy enhancement in UCS and shear strength parameters (cohesion and friction angle) with the incorporation of PU foam, nano-silica, or their amalgamation with fiber. Particularly striking was the superior performance observed with the combination of PU and basalt fiber, showcasing remarkable improvements in the mechanical behavior of both silica and calcareous sand, especially when considering shorter curing times. The synergistic effects of PU and basalt fiber proved instrumental in fortifying the soil's structural integrity against environmental challenges. Furthermore, it was consistently observed that calcareous samples exhibited elevated UCS, and shear strength values compared to their silica counterparts. This discrepancy underscores the inherent differences in mechanical behavior between these two types of sand, highlighting the need for tailored stabilization approaches. Moreover, the investigation delved into the failure patterns and microstructural changes within the stabilized samples, employing Scanning Electron Microscopy (SEM) for detailed analysis. This microscopic examination offered valuable insights into the efficacy of the stabilizing agents and their impact on the soil's mechanical properties. For instance, SEM imaging revealed significant bonding in fiber-reinforced samples, indicating enhanced load transfer mechanisms. Similarly, the presence of clusters of nano-silica particles adhering to sand particles showcased an improved cohesion within the stabilized soil. PU-stabilized samples, on the other hand, exhibited a cohesive layer enveloping sand particle, thereby enhancing interparticle connectivity and overall stability. The superior performance of PU over nano-silica was underscored by its ability to create a more cohesive matrix and foster stronger interparticle bonds, as evidenced by the SEM analysis. In conclusion, this study sheds light on the potential of innovative stabilization materials such as PU foam, nano-silica, and basalt fiber in bolstering the mechanical properties of soil. The findings not only offer valuable insights into the efficacy of these additives but also pave the way for the development of tailored soil stabilization techniques geared towards enhancing infrastructure resilience and sustainability.

کلیدواژه‌ها English

Silica and calcareous sand
soil improvement
Fiber
Nanomaterials
Polymer
[1] M. Salehi, M. Bayat, M. Saadat, M. Nasri, Experimental Study on Mechanical Properties of Cement-Stabilized Soil Blended with Crushed Stone Waste, KSCE Journal of Civil Engineering 25 (2021) 1974–1984. https://doi.org/10.1007/s12205-021-0953-5.
[2] S. Hadi Sahlabadi, M. Bayat, M. Mousivand, M. Saadat, Freeze–Thaw Durability of Cement-Stabilized Soil Reinforced with Polypropylene/Basalt Fibers, Journal of Materials in Civil Engineering 33 (2021) 04021232. https://doi.org/10.1061/(asce)mt.1943-5533.0003905.
[3] J.J.A. Baldovino, R.L.S. Izzo, J.L. Rose, M.D.I. Domingos, Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization, Construction and Building Materials 271 (2021) 121874. https://doi.org/10.1016/j.conbuildmat.2020.121874.
[4] M.E. Al-Atroush, T.A. Sebaey, Stabilization of expansive soil using hydrophobic polyurethane foam: A review, Transportation Geotechnics 27 (2021) 100494. https://doi.org/10.1016/j.trgeo.2020.100494.
[5] M. Syed, A. GuhaRay, S. Agarwal, A. Kar, Stabilization of Expansive Clays by Combined Effects of Geopolymerization and Fiber Reinforcement, Journal of The Institution of Engineers (India): Series A 101 (2020) 163–178. https://doi.org/10.1007/s40030-019-00418-3.
[6] M. Saadat, M. Bayat, Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR), Geomechanics and Geoengineering 17 (2022) 80–91. https://doi.org/10.1080/17486025.2019.1699668.
[7] A. Saygili, M. Dayan, Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers, Cold Regions Science and Technology 161 (2019) 107–114. https://doi.org/10.1016/j.coldregions.2019.03.010.
[8] B.A. Chethan, A.U. Ravi Shankar, Strength and Durability Characteristics of Cement and Class F Fly Ash-Treated Black Cotton Soil, Indian Geotechnical Journal 51 (2021) 1121–1133. https://doi.org/10.1007/s40098-020-00488-2.
[9] X. Yang, J. Wei, J. Liang, H. Rong, B. Wu, G. Zhang, S. Zhou, Corrosion Characteristics of Cement-Stabilized Crushed Stone under Vibrational Effects, J. Mater. Civ. Eng. 35 (2023) 04023092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004733.
[10] M.R. Yabaluie Khamesluei, M. Bayat, M. Mousivand, M.A. Nozari, Effect of zeolite replacement and tyre fibre inclusions on geotechnical properties of cement- or lime-stabilised sand, Geomechanics and Geoengineering 0 (2024) 1–16. https://doi.org/10.1080/17486025.2024.2326087.
[11] Z. Wang, G. Mei, Dynamic Properties of Rubber Cement Stabilized Soil Based on Resonant Column Tests, Marine Georesources & Geotechnology 30 (2012) 333–346. https://doi.org/10.1080/1064119X.2011.631693.
[12] M. Ghasemi, M. Bayat, M. Ghasemi, Experimental Study on Mechanical Behavior of Sand Improved by Polyurethane Foam, Exp Tech (2023). https://doi.org/10.1007/s40799-023-00633-5.
[13] X. Cao, L. Lee, T. Widya, C.M.- Polymer, U. 2005, Polyurethane/clay nanocomposites foams: processing, structure and properties, Polymer 46 (2005) 775–783.
[14] J.J. Espadas-Escalante, F. Avilés, Anisotropic compressive properties of multiwall carbon nanotube/polyurethane foams, Mechanics of Materials 91 (2015) 167–176. https://doi.org/10.1016/j.mechmat.2015.07.006.
[15] C.-S. Tang, D.-Y. Wang, Y.-J. Cui, B. Shi, J. Li, Tensile Strength of Fiber-Reinforced Soil, J. Mater. Civ. Eng. 28 (2016) 04016031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001546.
[16] M. Eshaghzadeh, M. Bayat, R. Ajalloeian, S.M. Hejazi, Mechanical behavior of silty sand reinforced with nanosilica-coated ceramic fibers, Journal of Adhesion Science and Technology 35 (2021) 2664–2683. https://doi.org/10.1080/01694243.2021.1898857.
[17] K. Tavakol, M. Bayat, B. Nadi, R. Ajalloeian, Combined Influences of Cement, Rice Husk Ash and Fibre on the Mechanical Characteristics of a Calcareous Sand, KSCE J Civ Eng (2023). https://doi.org/10.1007/s12205-023-0695-7.
[18] H.R. Razeghi, A.S. Rad, Influence of Fiber Reinforcement on the Ultrasonic P-Wave Velocity and Unconfined Compressive Strength of Cemented Clay, Int. J. of Geosynth. and Ground Eng. 10 (2024) 7. https://doi.org/10.1007/s40891-023-00516-0.
[19] E.R. Sujatha, S. Mahalakshmi, G. Kannan, Potential of fibre reinforced and cement stabilized fibre reinforced soil blocks as sustainable building units, Journal of Building Engineering 78 (2023) 107733. https://doi.org/10.1016/j.jobe.2023.107733.
[20] Y. Shen, Y. Tang, J. Yin, M. Li, T. Wen, An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement, Construction and Building Materials 294 (2021) 123537.
[21] S. Dhar, M. Hussain, The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil, Road Materials and Pavement Design 20 (2019) 1757–1778. https://doi.org/10.1080/14680629.2018.1468803.
[22] M. Syed, A. GuhaRay, S.K. Chukka, S. Ahmad, A Laboratory Investigation and Numerical Modeling on Fiber Reinforced Lime and Alkaline Binder Stabilized Pavement Subgrade Soil, Case Studies in Construction Materials (2024) e03000.
[23] A. Hosseini, S.M. Haeri, S. Mahvelati, A. Fathi, Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils, Journal of Rock Mechanics and Geotechnical Engineering 11 (2019) 1055–1065.
[24] A. Davoodi, M. Aboutalebi Esfahani, M. Bayat, S.E. Mohammadyan-Yasouj, Evaluation of performance parameters of cement mortar in semi-flexible pavement using rubber powder and nano silica additives, Construction and Building Materials 302 (2021) 124166. https://doi.org/10.1016/j.conbuildmat.2021.124166.
[25] A. Davoodi, M. Aboutalebi Esfahani, M. Bayat, S.E. Mohammadyan-Yasouj, A. Rahman, Influence of nano-silica modified rubber mortar and EVA modified porous asphalt on the performance improvement of modified semi-flexible pavement, Construction and Building Materials 337 (2022) 127573. https://doi.org/10.1016/j.conbuildmat.2022.127573.
[26] K. Boschi, C.G. Di Prisco, D. Grassi, G. Modoni, E. Salvatore, Nanosilica Grout Permeation in Sand: Experimental Investigation and Modeling, J. Geotech. Geoenviron. Eng. 150 (2024) 04023129. https://doi.org/10.1061/JGGEFK.GTENG-11436.
[27] J. Karimiazar, E. Sharifi Teshnizi, M. Mirzababaei, M. Mahdad, R. Arjmandzadeh, California Bearing Ratio of a Reactive Clay Treated with Nano-Additives and Cement, J. Mater. Civ. Eng. 34 (2022) 04021431. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004028.
[28] M. Jafarian Barough, S. Çelik, M. Oltulu, Investigation into the Effect of Nanomaterial Injection on Improving the Geotechnical Properties of Granular Soils, Iran J Sci Technol Trans Civ Eng 46 (2022) 3163–3179. https://doi.org/10.1007/s40996-021-00785-7.
[29] L. Tang, Z. Wang, X. Zhang, X. Chen, J. Luo, Y. Wang, Influence of rheological parameters on cement slurry penetration characteristics of novel oscillating grouting technology, Construction and Building Materials 409 (2023) 133999. https://doi.org/10.1016/j.conbuildmat.2023.133999.
[30] J. Kumar, R.K. Verma, A.K. Mondal, Taguchi- Grey Theory Based Harmony Search Algorithm (GR-HSA) for Predictive Modeling and Multi-Objective Optimization in Drilling of Polymer Composites, Experimental Techniques 45 (2021) 531–548. https://doi.org/10.1007/s40799-020-00428-y.
[31] I. Ud Din, P. Hao, S. Panier, K.A. Khan, M. Aamir, G. Franz, K. Akhtar, Design of a New Arcan Fixture for In-plane Pure Shear and Combined Normal/Shear Stress Characterization of Fiber Reinforced Polymer Composites, Experimental Techniques 44 (2020) 231–240. https://doi.org/10.1007/s40799-019-00353-9.
[32] Y. Huan, Y.Q. Shao, Y.J. Dai, Y.Q. Liu, T.Y. Wang, T.H. Zhang, M.H. Liu, Experimental Study of the Mechanical Properties of a Novel Supramolecular Polymer Filament Using a Microtensile Tester Based on Electronic Balance, Experimental Techniques 40 (2016) 737–742. https://doi.org/10.1007/s40799-016-0074-0.
[33] I. Golpazir, A. Ghalandarzadeh, M.K. Jafari, M. Mahdavi, Dynamic properties of polyurethane foam-sand mixtures using cyclic triaxial tests, Construction and Building Materials 118 (2016) 104–115. https://doi.org/10.1016/j.conbuildmat.2016.05.035.
[34] A. Samimi, S. Zarinabadi, Application solid polyurethane as coating in oil and gas pipelines, CHISA 2012 - 20th International Congress of Chemical and Process Engineering and PRES 2012 - 15th Conference PRES 1 (2012).
[35] M.M. Shokrieh, A. Saeedi, M. Chitsazzadeh, Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites, Journal of Nanostructure in Chemistry 3 (2013). https://doi.org/10.1186/2193-8865-3-20.
[36] Z. Zhou, X. Du, S. Wang, Strength for Modified Polyurethane with Modified Sand, Geotechnical and Geological Engineering 36 (2018) 1897–1906. https://doi.org/10.1007/s10706-017-0424-4.
[37] Y. Zhang, Y. Qi, Z. Zhang, Synthesis of PPG-TDI-BDO polyurethane and the influence of hard segment content on its structure and antifouling properties, Progress in Organic Coatings 97 (2016) 115–121. https://doi.org/10.1016/j.porgcoat.2016.04.002.
[38] Q. Chen, R. Yu, Y. Li, G. Tao, S. Nimbalkar, Cyclic stress-strain characteristics of calcareous sand improved by polyurethane foam adhesive, Transportation Geotechnics 31 (2021) 100640. https://doi.org/10.1016/j.trgeo.2021.100640.
[39] M.M. Abdelnaeem, F. Hassona, Characterization of polyurethane foam conditioned sand, Journal of Advanced Engineering Trends 42 (2023) 199–218.
[40] J. Liu, Z. Chen, Z. Song, Y. Bai, W. Qian, J. Wei, D.P. Kanungo, Tensile behavior of polyurethane organic polymer and polypropylene fiber-reinforced sand, Polymers 10 (2018) 499.
[41] T. Hoang, H. Do, J. Alleman, B. Cetin, A.Y. Dayioglu, Comparative evaluation of freeze and thaw effect on strength of BEICP-stabilized silty sands and cement- and fly ash-stabilized soils, Acta Geotech. 18 (2023) 1073–1092. https://doi.org/10.1007/s11440-022-01612-7.
[42] M. Ghanbari, M. Bayat, Effectiveness of reusing steel slag powder and polypropylene fiber on the enhanced mechanical behavior of cement-stabilized sand, Civ. Eng. Infrastruct. J. (2022). https://doi.org/10.22059/ceij.2021.319310.1742.
[43] M. ShahriarKian, S. Kabiri, M. Bayat, Utilization of Zeolite to Improve the Behavior of Cement-Stabilized Soil, Int. J. of Geosynth. and Ground Eng. 7 (2021) 35. https://doi.org/10.1007/s40891-021-00284-9.
[44] C.C. Qiu, G.Z. Xu, G.Q. Gu, W.Z. Song, D.H. Cao, Uniaxial compression test of cement-solidified dredged slurry columns encased with geogrid, Geosynthetics International (2024) 1–17. https://doi.org/10.1680/jgein.23.00132.
[45] M. Roustaei, J. Pumple, M.T. Hendry, J. Harvey, D. Froese, Effect of freeze-thaw cycles on the macrostructure and failure mechanisms of fiber-reinforced clay using industrial computed tomography, Can. Geotech. J. (2024) cgj-2023-0136. https://doi.org/10.1139/cgj-2023-0136.