ارزیابی عددی مقاومت برشی اعضای با مقطع I، H، لوله‌ای و قوطی شکل در چشمه اتصال قاب‌های خمشی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده مهندسی عمران، دانشکدگان فنی، دانشگاه تهران
2 دانشجوی دکتری سازه، دانشگاه ارومیه، ارومیه، ایران
چکیده
در این مقاله ابتدا روابط آیین­ نامه ­ای و تئوری مقاومت برشی اعضای با مقطع H شکل نسبت به محور قوی، لوله‌ای، قوطی شکل و H شکل نسبت به محور ضعیف موردمطالعه قرار گرفت. سپس مقاومت برشی هر یک از این مقاطع، با استفاده از مدل‌سازی عددی در نرم‌افزار آباکوس مورد ارزیابی قرار گرفت. برای ارزیابی عددی، از 35 مقطع مختلف استفاده شد. هر یک از نمونه‌ها تحت تحلیل پوش­ اور و چرخه­ ای قرار گرفتند. طول نمونه­­ ها به نحوی بود که حالت حدی برش تعیین­ کننده ­تر از حالت حدی خمش بود. مطابق این تحقیق، نتایج حاصل از روابط ارائهشده در AISC 360 برای تعیین مقاومت برشی اعضای با مقطع H شکل نسبت به محور قوی با نتایج مدل‌سازی‌های عددی انطباق بسیار نزدیکی داشت. نتایج این تحقیق نشان داد که در این نوع مقاطع در دریفت‌های بالاتر، نتایج حاصل از روش AISC 360 حدوداً 10% غیر محافظه‌کارانه است. نتایج روش AISC 360 برای تعیین مقاومت برشی اعضای با مقطع لوله‌ای با نتایج مدل‌سازی‌های عددی انطباق نزدیکی داشت و در دریفت‌های بالاتر، نتایج حاصل از روش AISC 360 حدوداً 20% محافظه‌کارانه بود. نتایج روابط ارائهشده در AISC 360 برای تعیین مقاومت برشی اعضای با مقطع قوطی شکل با نتایج مدل‌سازی‌های عددی انطباق نزدیکی داشت؛ زیرا در این نوع مقاطع به دلیل بسته بودن مقطع، شرایط بازتوزیع تنش برشی مهیا بوده و هر یک از جان‌ها به‌طور یکسان در برابر برش مقاومت می‌کنند. نتایج حاصل از روابط ارائهشده در AISC 360 برای تعیین مقاومت برشی اعضای با مقطع H شکل نسبت به محور ضعیف با نتایج مدل‌سازی‌های عددی انطباق نداشت و مقاومت برشی به‌دست‌آمده از روش AISC 360 حدوداً 20% غیر محافظه‌کارانه بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Evaluation of Shear Strength of Members with I, H, Tubular and Box Sections in the panel zone of steel moment-resisting frames

نویسندگان English

Abazar Asghari 1
Aydin Pavir 2
1 School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 PhD student, Department of Civil Engineering, Urmia University, Urmia, Iran
چکیده English

In this article, first, theoretical and code-based relationships of nominal shear strength of H-shaped members with respect to the strong axis, tubular, box-shaped, and H-shaped members with respect to the weak axis were studied. Then, the nominal shear strength of each mentioned section was evaluated using numerical modeling in Abaqus software. For numerical parametric evaluation, 35 members with different cross-sections were used. Each of these members was modeled in Abaqus software and each of them was subjected to both pushover and cyclic analyses. The lengths of each of these models were such that in all models, the shear limit state was more decisive than the flexural limit state. Based on this research, the results of the relationships presented in the AISC 360 for determining the nominal shear strength of H-shaped members with respect to the strong axis have very close conformity with the results of numerical modeling in Abaqus software, and at higher drifts, the results of the AISC 360 method are approximately 10% non-conservative. The results of the relationships presented in the AISC 360 for determining the nominal shear strength of tubular sections have very close conformity with the results of numerical modeling in Abaqus software, and at higher drifts, the results of the AISC 360 method are approximately 20% conservative. The results of the relationships presented in the AISC 360 for determining the nominal shear strength of box-shaped members have very close conformity with the results of numerical modeling in Abaqus software. The results of the relationships presented in the AISC 360 code for determining the nominal shear strength of H-shaped members with respect to the weak axis do not have close conformity with the results of numerical modeling in Abaqus software, and the nominal shear strength obtained from the AISC 360 is about 20% non-conservative.

کلیدواژه‌ها English

Shear Strength
H-shaped Section
Tubular
Box-shaped sections
Redistribution of stress
[1] Tajik, N., Mirghaderi, S. R., Asghari, A., & Hamidia, M. (2024). Experimental and numerical study on weld strengths of built-up steel box columns. Journal of Constructional Steel Research, 213, 108362.‏ https://doi.org/10.1016/j.jcsr.2023.108362
[2] Asghari, A., & Azimi, B. (2017). Evaluation of sensitivity of CBFs for types of bracing and story numbers. Scientia Iranica, 24(1), 40-52.‏ https://doi.org/10.24200/sci.2017.2375
[3] Asghari, A., & Saharkhizan, S. (2019). Seismic design and performance evaluation of steel frames with knee-element connections. Journal of Constructional Steel Research, 154, 161-176.‏ https://doi.org/10.1016/j.jcsr.2018.11.011
[4] Pavir, A., & Shekastehband, B. (2017). Hysteretic behavior of coupled steel plate shear walls. Journal of Constructional Steel Research, 133, 19-35.‏ https://doi.org/10.1016/j.jcsr.2017.01.019
[5] Jaberi, V., & Asghari, A. (2022). Seismic behavior of linked column system as a steel lateral force resisting system. Journal of Constructional Steel Research, 196, 107428.‏ https://doi.org/10.1016/j.jcsr.2022.107428
[6] Jalilzadeh Afshari, M., Asghari, A., & Gholhaki, M. (2019). Shear strength and stiffness enhancement of cross-stiffened steel plate shear walls. International Journal of Advanced Structural Engineering, 11(2), 179-193.‏ https://doi.org/10.1007/s40091-019-0224-6
[7] Asghari, A., & Azimi Zarnagh, B. (2017). A new study of seismic behavior of perforated coupled shear walls. International Journal of Civil Engineering, 15, 775-789.‏ https://doi.org/10.1007/s40999-017-0174-y
[8] Rezaee, Mohammad, Asghari, Abazar, (2024). Lateral-torsional buckling investigation of multi-tiers eccentrically braced frames with shear link beam. Structures, 68, 107063. https://doi.org/10.1016/j.istruc.2024.107063
[9] Asghari, A., Hosseini, S. (2024). Seismic Behavior Assessment of Special Concentrically X-braced Frame with Through Gusset Plate. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Pages 1-13. https://doi.org/10.1007/s40996-024-01524-4
[10] Chen, X., & Shi, G. (2018). Experimental study of end-plate joints with box columns. Journal of Constructional Steel Research, 143, 307-319.‏ https://doi.org/10.1016/j.jcsr.2017.12.029
[11] Shek, P. N., Tahir, M. M., Siang, T. C., & Kueh, A. B. H. (2011). Experimental Investigation of End-Plate Connection with Cruciform Column Section. Advanced Materials Research, 250, 3730-3733.‏ https://doi.org/10.4028/www.scientific.net/AMR.250-253.3730
[12] Krawinkler, H., Bertero, V. V., & Popov, E. P. (1971). Inelastic behavior of steel beam-to-column subassemblages (Vol. 71, No. 7). University of California, Berkeley.‏
[13] Bertero, V. V., Krawinkler, H., & Popov, E. P. (1973). Further studies on seismic behavior of steel beam-column subassemblages. Earthquake Engineering Research Center, University of California.‏
[14] Krawinkler, H. (1978). Shear in beam-column joints in seismic design of steel frames. Engineering Journal, 15(3), 82-91.‏ https://doi.org/10.62913/engj.v15i3.318
[15] FEMA-355C. State of the art report on systems performance of steel moment frames subject to earthquake ground shaking. Washington (DC): Federal Emergency Management Agency; 2000.
[16] FEMA-355D. State of the art report on connection performance. Washington (DC): Federal Emergency Management Agency; 2000.
[17] FEMA-355F. State of the art report on performance prediction and evaluation of steel moment-frame buildings. Washington (DC): Federal Emergency Management Agency; 2000.
[18] Ricles, J. M., Fisher, J. W., Lu, L. W., & Kaufmann, E. J. (2002). Development of improved welded moment connections for earthquake-resistant design. Journal of Constructional Steel Research, 58(5-8), 565-604.‏ https://doi.org/10.1016/S0143-974X(01)00095-5
[19] Brandonisio, G., De Luca, A., & Mele, E. (2012). Shear strength of panel zone in beam-to-column connections. Journal of Constructional Steel Research, 71, 129-142.‏ https://doi.org/10.1016/j.jcsr.2011.11.004
[20] Standard, B. (2005). Eurocode 8: Design of structures for earthquake resistance. Part, 1, 1998-1.‏
[21] ANSI/AISC 360–10, (2010). Specification for structural steel buildings.‏
[22] Sazmand, E., & Aghakouchak, A. A. (2012). Modeling the panel zone in steel MR frames composed of built-up columns. Journal of Constructional Steel Research, 77, 54-68.‏ https://doi.org/10.1016/j.jcsr.2012.04.002
[23] Mansouri, I., & Saffari, H. (2014). A new steel panel zone model including axial force for thin to thick column flanges. Steel and Composite Structures, 16(4), 417-436.‏ http://dx.doi.org/10.12989/scs.2014.16.4.417
[24] Rong, B., Liu, S., Yan, J. B., & Zhang, R. (2018). Shear behaviour of panel zone in through-diaphragm connections to steel tubular columns. Thin-Walled Structures, 122, 286-299.‏ https://doi.org/10.1016/j.tws.2017.10.029
[25] Paghale, F. J., Saffari, H., & Fakhraddini, A. (2018). PANEL ZONE MODELLING OF BOX COLUMNS: AN ANALYTICAL AND NUMERICAL APPROCH. ADVANCED STEEL CONSTRUCTION, 14(3), 361-376.‏
[26] ABAQUS standard user's manual. Version 6.8-1, vol. 1–3. USA: Hibbitt, Karlsson and Sorensen, Inc; 2008.
[27] ANSI/AISC 360–22, (2022). Specification for structural steel buildings.‏
[28] Sadd, M. H. (2009). Elasticity: theory, applications, and numerics. Academic Press.‏
[29] Trahair, N. S. (2002). Bearing, shear, and torsion capacities of steel angle sections. Journal of Structural Engineering, 128(11), 1394-1398.‏ https://doi.org/10.1061/(ASCE)0733-9445(2002)128:11(1394)
[30] Venture, S. J. (1997). Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens. Rep. No. SAC/BD-97, 2.‏
[31] Daley, A. J., Brad Davis, D., & White, D. W. (2017). Shear strength of unstiffened steel I-section members. Journal of Structural Engineering, 143(3), 04016190.‏ https://doi.org/10.1061/(ASCE)ST.1943-541X.0001639
[32] Daley, A., & Davis, B. (2015). Shear strength of prismatic steel I-shaped members. Metal Building Manufacturers Association, Cleveland.‏
[33] Lewis, G. R. (2010). Replaceable shear and flexural links for the linked column frame system (Doctoral dissertation, Portland State University. Civil and Environmental Engineering).‏