تعیین درصد بهینه آلیاژ حافظه‌دار شکلی در سازه‌های فولادی مجهز به مهاربند کمانش‌تاب تحت زلزله‌های متوالی بحرانی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده مهندسی عمران، دانشگاه تفرش
2 استادیار، دانشکده مهندسی عمران، دانشگاه تفرش
چکیده
نظر به پتانسیل بالای خسارت‌زایی زلزله‌های متوالی، نادیده گرفته‌شدن این زلزله‌ها در آیین‌نامه‌های لرزه‌ای و استقبال جامعه مهندسین از روش‌های نوین بهبود عملکرد لرزه‌ای، این مطالعه به بررسی اثر آلیاژ حافظه‌دار شکلی در سازه‌های فولادی مجهز به مهاربند کمانش‌تاب جهت تعیین درصد بهینه آن تحت زلزله‌های متوالی می‌باشد. لذا در این راستا قاب‌های ساده فولادی 4 و 7 طبقه با مهاربند قطری کمانش‌تاب نماینده سازه‌های کوتاه مرتبه و میان مرتبه براساس ضوابط آیین‌نامه‌های کشور ایران در نرم افزار ETABS طراحی و سپس در نرم‌افزار OpenSees پیاده‌سازی شدند. بعد از صحت‌سنجی عملکرد مدل‌های مورد مطالعه در محدوده خطی و غیرخطی، با لحاظ نمودن درصدهای مختلف آلیاژهای حافظه‌دار شکلی شامل 20، 40، 60، 80 و 100 درصد در قاب فولادی 4 طبقه و 5، 10، 15، 20 و 25 درصد در قاب فولادی 7 طبقه، تحت سناریوهای لرزه‌ای با و بدون توالی لرزه‌ای بررسی شده‌اند. نتایج نشان می‌دهد که با افزایش درصد آلیاژ حافظه‌دار شکلی در قاب فولادی 4 طبقه پاسخ نسبت تغییرمکان طبقات در دو حالت لرزه منفرد و متوالی افزایش یافته، اما در قاب فولادی 7 طبقه تقریباً کاهش یافته و این کاهش در طبقات بالاتر تحت لرزه منفرد بهتر احساس می‌شود. در نهایت درصد بهینه آلیاژ حافظه‌دار شکلی از میان درصدهای انتخابی در مطالعه حاضر برای قاب فولادی 4 طبقه 20 درصد و برای قاب فولادی 7 طبقه 15 درصد پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Optimal Percentage of Shape Memory Alloy in Steel Structures Equipped with Buckling Restrained Brace (BRB) under Successive Earthquakes

نویسندگان English

Danial Saberi 1
Elham Rajabi 2
1 Department of Civil Engineering, Tafresh Univesity, 39518-79611 Tafresh, Iran
2 Department of Civil Engineering, Tafresh Univesity, 39518-79611 Tafresh, Iran
چکیده English

In the seismic active areas, strong ground motions usually consist of the numerous successive shocks (Foreshock-mainshock or mainshock-aftershock), which have the significant potential to increase the structural response and cumulative damage. This phenomenon (as called seismic sequence) can affect on the behavior of structures, control the seismic performace of buildings. Multiple earthquakes which have been recorded in all parts of the world are proven that the structures located in the mentioned areas are not only experienced a single event, but also they withstand a series of shocks. Due to the high importance of consecutive earthquakes, application of buckling restrained braces (BRB) and shape memory alloy (SMA) materials as smart materials in engineering sciences in the past decades, this paper tries to evaluate the seismic performance of steel frames equipped with buckling restrained brace by determination of the optimal percentage of shape memory alloy under successive earthquakes. Because SMA has unique advantages and characteristics such as no need to replace after an earthquake, high resistance to corrosion and fatigue, the ability to absorb high energy, the ability to return to the original state by applying temperature, tolerating strain up to about 10% without leaving residual strain after an earthquake, and tolerating multiple cycles of loading and unloading, various applications can be found separately and combined in controlling the behavior of structures. It should be noted that despite the high damage potential of successive earthquakes, they are neglected in the seismic codes and design earthquake is still proposed without successive shocks.

Hence, the acceptance of new methods for improving the seismic performance of structures under consecutive shocks seems necessary by the engineering community. Therefore, in this regard, 4 and 7 story steel frames with diagonal buckling restrained braces representing short and mid rise structures were designed based on Iranian codes in ETABS software and then implemented in OpenSees software. After selecting the reference model, the performance of the studied models is verified for the linear and non-linear region through comparison of periods and pushover curve of reference and implemented model. In the following, different percentages of shape memory alloys including 20, 40, 60, 80 and 100% for the 4 story steel frames and 5, 10, 15, 20 and 25% for 7 story steel structure has been considered. The studied models are analyzed with/without shape memory alloys under seismic scenarios with and without seismic sequence in Opensees software. For this purpose, critical successive shocks are selected based on effective peak acceleration (EPA) from PEER center. For compatibility aspects between the seismic analysis and seismic design, the selected records should be scaled by designing spectrum for each fundamental period of studied structure in order to have identical spectral acceleration. The results of nonlinear dynamic analysis show that with the increase in the percentage of shape memory alloy in the 4 story steel frame, the response ratio of steel frames under single and consecutive earthquakes increased, but in the 7 story steel frame, it almost decreased, and this reduction is better felt in the higher stories under the single earthquake. Finally, the optimal percentage of shape memory alloy among the selected percentages in the present study is suggested to be 20% for 4 story steel frame and 15% for 7 story steel frame.

کلیدواژه‌ها English

Buckling Restrained brace
Shape memory alloys
Seismic Sequence
Steel Structures
[1] Hoveidae, N., and Radpour, S. (2020). Performance evaluation of buckling-restrained braced frames under repeated earthquakes. Bulletin of Earthquake Engineering, 19, 241–262.
[2] Yin, Z., Yang, B., and An., S. H. (2021). Seismic Performance Analysis of Buckling-Restrained Braced Steel Frames with Ductile Castings. KSCE Journal of Civil Engineering, 25, 3879–3896.
[3] Tzimas, S.A., Kamaris, S.G. & Stefopoulos, G. (2019). Seismic analysis and behaviour of mixed MRF/BRB regular steel space frames with uniaxial eccentricity. Soil Dynamics and Earthquake Engineering, 123, 31-35.
[4] Pei, S., Zhang, Z., Deng, E.F., Wang, Y.B. (2021). Experimental study on seismic performance of ultrahigh‑strength steel frames with buckling‑restrained braces. Archives of Civil and Mechanical Engineering, 21(4), 1-13.
[5] Jia, M., He, J. & Lu, D. (2022). Experimental research of seismic performance of buckling-restrained braced frame with ductile connections. Structures, 41, 908-924.
[6] Pachideh, G., Gholhaki, M., Lashkari, R. & Rezaifar, O. (2020). Behavior of BRB Equipped with a Casing Comprised of Steel and Polyamide. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 174(8), 1-38.
[7] Veismoradi, S., Cheraghi, A.H. & Darvishan E. (2018). Probabilistic mainshock-aftershock collapse risk assessment of buckling restrained braced frames. Soil Dynamics and Earthquake Engineering, 115, 205-216.
[8] Morfuni, F., Freddi, F. & Galasso, C. (2019). Seismic Performance of Dual Systems with BRBs under Mainshock-Aftershock Sequences. 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13) Seoul, South Korea, May 26-30.
[9] Pandikkadavath M.S., Mangalathu S., Oinam R.M., Kumar PC.A., Sahoo D.R., and Krishnan NM.A., (2020). Drift Response Evaluation of Buckling-Restrained Braced Frames (BRBFs) under Sequential Seismic Disturbances. IOP Conf. Series: Materials Science and Engineering, 936(1), 012040.
[10] Moradiyan, M., Pachideh, G. & Moshtagh, A. (2022). Study of seismic behavior and development of fragility curves of divergent braced frames under successive earthquakes. Journal of Structural and Construction Engineering. 8(4), 156-175.
[11] Ghowsi, F.A. & Sahoo, D.R. (2020). Seismic Performance of Nine-Story Self-centering Buckling-Restrained Braced Frames. Structural Integrity Assessment, Lecture Notesin Mechanical Engineering, 801-813.
[12] Gong, C., Jia, M.M., Cheng, X.H., Gritcuk, M. (2022). Seismic performance of buckling-restrained braced steel frames subjected to earthquake main shock-aftershock sequences. Journal of Physics: Conference Series. 2230(1), 012026.
[13] Nazarimofrad, E., and Shokrgozar, A. (2019). Seismic performance of steel braced frames with self‐centering buckling‐restrained brace utilizing superelastic shape memory alloys. the structural design of tall and special buildings28(2).
[14] Jalalvandi, M., Soraghi, A., Farooghi Mehr, S.M., Haghollahi, A., Abasi, A. (2022). Study and Comparison of the Performance of Steel Frames with BRB and SMA Bracing. Structural Engineering International.413-424.
[15] Sadeghipour, A., Khorramabadi, R. (2023). Analyzing the Explosive Behavior of a Buckling Restrained Brace Frame Made of Shape Memory Alloy by Using Finite Element Method. International Journal of Science and Engineering Applications, Volume 12-Issue 09, 144 - 155, 2023, ISSN: 2319 – 7560.144-155.
[16] Huang, Y., Xu, G., Zhang, Y., Zhou, Z., Ke, K. (2024). Seismic behaviour of self-centring hybrid steel frames equipped with SMA plates under mainshock–aftershock sequences. Case Studies in Construction Materials 20 (2024) e02875.
[17] Khosravikhor, A., Gholhaki, M., Rezaifar, O., & Pachideh, G. (2023). Effect of Ni-Ti shape memory alloy on ductility and response modification factor of SPSW systems. Steel and Composite Structures, 48(3), 353-365. DOI: https://doi.org/10.12989/scs.2023.48.3.353.
[18] Hoveidae, N. & Radpour, S. (2021). A novel all-steel buckling restrained brace for seismic drift mitigation of steel frames. Bulletin of Earthquake Engineering. 19, 1537–1567.
[19] Tremblay, R., Bolduc, P., Neville, R., and DeVall, R. (2006). Seismic testing and performance of buckling restrained bracing systems, Canadian Journal of Civil Engineering, 33, 183-198.
[20] Tazarv, M. & Saiid Saiidi, M. (2015). Reinforcing NiTi superelastic SMA for concrete structures. Journal of Structural Engineering. 141(8), 04014197.
[21] Taftali, B. (2007). Probabilistic seismic demand assessment of steel frames with shape memory alloy connections, PhD. Dissertation, Georgia Institute of Technology, Atlanta.
[22] Ghodrati Amiri, G. & Rajabi, E. (2017). Damage evaluation of reinforced concrete and steel frames under critical successive scenarios. International Journal of Steel Structures. 17(4), 1495-1514.
[23] Abdollahzadeh, G. H., Mohammadgholipour, A., Omranian, E. (2018). Seismic Evaluation of Steel Moment Frames Under Mainshock–Aftershock Sequence Designed by Elastic Design and PBPD Methods. Journal of Earthquake Engineering. 23(2), 1605-1628.