ارزیابی تأثیر اندازه و شکل بازشو در ظرفیت برش دوطرفه سقف وافل

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه مهندسی عمران، دانشکده فنی و مهندسی، موسسه آموزش عالی زند شیراز
2 استادیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد لارستان
چکیده
یکی از عوامل مهم و تعیین‌کننده در عملکرد و طراحی سازه‌های مختلف وزن آن‌هاست. از راهکارهای موجود برای کاهش وزن سازه‌ها می‌توان به استفاده از سقف‌های وافل اشاره کرد. استفاده از سقف وافل به‌صورت تخت می‌تواند سقف را تحت نیروی شدید برش دوطرفه قرار داده و قرارگیری بازشو در نزدیکی ستون می‌تواند باعث کاهش ظرفیت برش دوطرفه سقف شود. در این تحقیق به‌منظور بررسی تاثیر اندازه و شکل بازشو در رفتار برش دوطرفه سقف‌های وافل، 9 نمونه سقف در نرم‌افزار ABAQUS مدل‌سازی و به روش اجزاء محدود تحلیل شده است. مدل‌ها به دو گروه تقسیم شده‌اند به‌نحوی‌که گروه اول بازشوهای مستطیلی و گروه دوم بازشوهای مربعی‌شکل را مورد بررسی قرار داده است. نتایج تحلیل‌ و بررسی‌ها نشان‌دهنده آن است که استفاده از بازشوهای مربعی می‌تواند ظرفیت برش دوطرفه را 9 درصد بیشتر از باشو‌ها مستطیلی کاهش دهد. همچنین هندسه بازشو در تغییر شکل سقف وافل بسیار مؤثر است. به نحوی که در صورت استفاده از بازشو‌های مربعی، با افزایش مساحت، مقدار تغییر شکل سقف افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the effect of the size and shape of the opening on the punching shear capacity of the waffle panel

نویسندگان English

Adib Yeganeh 1
Behzad Eftekhar 2
1 Master's Student, Department of Civil Engineering, Faculty of Engineering, Zand Institute of Higher Education
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Islamic Azad University of Larestan branch
چکیده English

An essential and decisive factor in the performance and design of various structures is their weight. One of the available solutions to reduce the weight of structures is using waffle panels. This slab consists of a grid of ribs regularly distributed in orthogonal directions and a thin concrete slab placed on the ribs. Using a flat waffle slab can put the roof under severe punching shear force. Also, placing the opening near the column can reduce the punching shear capacity of the slab. By reviewing the articles used in the codes, such as ACI 318-19 and also other valid articles about the punching shear capacity, it can be seen that most of the research done on this issue was done for simple concrete slabs and from such results the behavior of waffle panels are predicted. Past research has shown that the numerical methods of calculating the forces applied to concrete with the finite element method are very close to the results obtained from laboratory experiments. For this reason, in this research, to investigate the behavior of waffle panels against punching shear, nine samples of waffle panels have been modeled in ABAQUS software and analyzed using the finite element method. In both groups, for a fixed distance from the edge of the column to the opening, four different sizes of the opening on the slab were considered, and the changes made in the punching shear capacity and the ductility of the slab were calculated. The difference between the first and second group of slabs is in the opening geometry and how to increase their area. In the first group, only one dimension of the opening is increased, and the geometrical shape of the opening is rectangular. Considering the opening to this form, the b0 value introduced in the ACI Code remains constant. In this case, the punching shear capacity obtained from the equations of the code does not change. In the second group, the shape of the openings is square, but the area of the openings is equal to the first group.

A two-dimensional 2-node truss T3D2 finite element is used for the steel, and a three-dimensional 8-node hexahedral C3D8 finite element is used for the concrete. Also, to simulate the concrete compressive behavior, the Hognestad model is used in this research. The model results have been validated with the laboratory sample, and to provide a complete understanding of this issue, the modeling results have been compared with those obtained from the ACI 318-19 code. The punching capacity is noticeably reduced after placing an opening on the waffle slab. In case of using a rectangular opening at the edge of the column, the punching shear capacity decreases slowly with the increase of the opening area. This result is contrary to the assumption of the code. By using a square opening, with the increase of the area of the opening, the process of decreasing the punching shear capacity is almost uniform and linear. ACI code relations can have up to 25% error in this situation. These relations are more accurate for calculating the punching shear capacity in waffle panels with rectangular openings and slabs without openings. The reduction of punching shear capacity due to square openings is more than rectangular openings of the same area. This result is consistent with the relationships presented in ACI 318-19. Also, with the increase of the opening area, the difference in this value between groups 1 and 2 increases

کلیدواژه‌ها English

Waffle panels
Optimization of opening dimensions and geometry
Punching Shear
Cracking pattern
[1] Annan CD, Youssef MA, El Naggar MH. Seismic Vulnerability Assessment of Modular Steel Buildings. Journal of Earthquake Engineering. 2009;13(8):1065-88.
[2] Kaveh A, Behnam AF. Cost optimization of a composite floor system, one-way waffle slab, and concrete slab formwork using a charged system search algorithm. Scientia Iranica. 2012;19(3):410-6.
[3] Maheri MR. Performance of Building Roofs in the 2003 Bam, Iran, Earthquake. Earthquake Spectra. 2005;21(1_suppl):411-24.
[4] Beck H, KÖNig G. RESTRAINING FORCES (FESTHALTEKRÄFTE) IN THE ANALYSIS OF TALL BUILDINGS. In: Coull A, Smith BS, editors. Tall Buildings: Pergamon; 1967. p. 513-36.
[5] Al-Bayati AF, Lau TL, Clark LA. Edge punching shear of waffle slabs subjected to moment parallel to the slab's free edge. Magazine of Concrete Research. 2022;0(0):1-11.
[6] Sarvari S, Esfahani MR. An experimental study on post-punching behavior of flat slabs. Structures. 2020;27:894-902.
[7] El-Shafiey TF, Atta AM, Hassan A, Elnasharty M. Effect of opening shape, size and location on the punching shear behaviour of RC flat slabs. Structures. 2022;44:1138-51.
[8] Panahi S, Zahrai SM. Performance of typical plan concrete buildings under progressive collapse. Structures. 2021;31:1163-72.
[9] Aguiar A, Oliveira D, Reis L, Nzambi A. Punching shear strength of waffle flat slabs with opening adjacent to elongated columns. Engineering Structures. 2021;243:112641.
[10] Milligan GJ, Polak MA, Zurell C. Finite element analysis of punching shear behaviour of concrete slabs supported on rectangular columns. Engineering Structures. 2020;224:111189.
[11] Vielma J, Barbat AH, Oller S. Seismic performance of waffled-slab floor buildings. Proceedings of the Institution of Civil Engineers - Structures and Buildings. 2009;162(3):169-82.
[12] Balomenos GP, Genikomsou AS, Polak MA. Investigation of the effect of openings of interior reinforced concrete flat slabs. Structural Concrete. 2018;19(6):1672-81.
[13] Genikomsou A, Polak MA. Effect of Openings on Punching Shear Strength of Reinforced Concrete Slabs—Finite Element Investigation. ACI Structural Journal. 2017;114(5).
[14] Alrousan RZ, Alnemrawi BaR. The influence of concrete compressive strength on the punching shear capacity of reinforced concrete flat slabs under different opening configurations and loading conditions. Structures. 2022;44:101-19.
[15] Ibrahim A, Salim H, Shehab El-Din H. Moment coefficients for design of waffle slabs with and without openings. Engineering Structures. 2011;33(9):2644-52.
[16] Anil Ö, Kina T, Salmani V. Effect of opening size and location on punching shear behaviour of two-way RC slabs. Magazine of Concrete Research. 2014;66(18):955-66.
[17] ACI-Committee. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. USA: American Concrete Institute; 2019.
[18] Eivind Hognestad NWH, Douglas M. Concrete Stress Distribution in Ultimate Strength Design. ACI Journal Proceedings. 1955;52(12).
[19] Genikomsou A, Polak MA. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures. 2015;98:38-48.
[20] Lubliner J, Oliver J, Oller S, Oñate E. A plastic-damage model for concrete. International Journal of Solids and Structures. 1989;25(3):299-326.
[21] Lee J, Fenves GL. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics. 1998;124(8):892-900.
[22] Comité Euro-International du Béton. CEB-FIB-model Code 1990: Design code1993.
[23] Franus A, Jemioło S, Antoni M. A slightly compressible hyperelastic material model implementation in ABAQUS. Engineering Solid Mechanics. 2020;8:365-80.
[24] Malm R. Predicting shear type crack initiation and growth in concrete with non-linear finite element method: Royal Institute of Technology (KTH); 2009.
[25] Jankowiak I, Kakol W, Madaj A. Identification of a continuous composite beam numerical model, based on experimental tests2005. 163-78 p.
[26] Oliveira DRC, Regan PE, Melo GSSA. Punching resistance of RC slabs with rectangular columns. Magazine of Concrete Research. 2004;56(3):123-38.