[1] H. Fathnejat, P. Torkzadeh, E. Salajegheh, R. Ghiasi, Structural Damage Detection by Model Updating Method Based on Cascade Feed-Forward Neural Network as an Efficient Approximation Mechanism, Int. J. Optim. Civ. Eng. 4 (2014) 451–472
[2] S.R.H. Vaez, N. Fallah, A. Mohammadzadeh, Damage Identification in Large-scale Double-layer Truss Structures Via a Two-stage Approach, Journal of Stress Analysis 3 (2) (2019) 95-107.
[3] Teimouri, H., Davoodi, M.R., Mostafavian, S.A. and Khanmohammadi, L, Damage Detection in Double Layer Grids with Modal Strain Energy Method and Dempster-Shafer Theory, Civil Engineering Infrastructures Journal 2021, 54(2): 253-266.
[4] Teimouri, H., Davoodi, M. R., Mostafavian, S. A. Detecting damage location and severity in a double layer grid using modal strain energy method and data fusion. Journal of Structural and Construction Engineering, 2020; 7(3): 35-54. Doi: 10.22065/jsce.2018.126917.1518.
[5] Tüfekci, Mertol & Tufekci, Ekrem & Dikicioglu, Adnan. (2020). Numerical Investigation of the Collapse of the Steel Truss Roof and a Probable Reason of Failure. 10.20944/preprints 202010.0151.v2.
[6] Fu, F., Parke, G.A.R. Assessment of the Progressive Collapse Resistance of Double-Layer Grid Space Structures Using Implicit and Explicit Methods. Int J Steel Struct 18, 831–842 (2018). https://doi.org/10.1007/s13296-018-0030-1
[7] Y. S. Hamid, P. Disney, and G. a R. Parke, “Progressive Collapse of Double-Layer Space Trusses,” Conference: IABSE-IASS SYMPOSIUM LONDON 2011, At London.
[8] Davoodi MR, Mostafavian SA, Nabavian SR, Jahangiry GH. Determining minimum number of required accelerometers for output-only structural identification of frames. arXiv preprint arXiv:2010.07490. 2020 Oct 15.
[9] A. Cunha, E. Caetano, From input-output to output-only modal identification of civil engineering structures, SAMCO Final Rep. (2005) 1–22.
[10] C. Rainieri, G. Fabbrocino, Operational modal analysis for the characterization of heritage structures, Geofizika. 28 (2011) 109–126.
[11] M. Batel, Operational modal analysis-Another way of doing modal testing, Sound Vib. (2002) 22–27.
[12] D.F. Giraldo, W. Song, S.J. Dyke, J.M. Caicedo, Modal Identification through Ambient Vibration: Comparative Study, J. Eng. Mech. 135 (2009) 759–770. doi:10.1061/(ASCE)0733-9399(2009)135:8(759).
[13] Tarinejad R, Pourgholi M, Yaghmaei-Sabegh S. System Identification of Arch Dams Using Balanced Stochastic Subspace Identification. MCEJ 2017; 17 (1) :53-64
[14] C.E. Ventura, T. Horyna, Measured and calculated modal characteristics of heritage court tower in Vancouver, B.C, Exp. Tech. 24 (2000) 44–47. doi:10.1111/j.1747-1567.2000. tb 02272.x.
[15] F.N. Kudu, Ş. Uçak, G. Osmancikli, T. Türker, A. Bayraktar, Estimation of damping ratios of steel structures by Operational Modal Analysis method, J. Constr. Steel Res. 112 (2015) 61–68.
[16] L. Maliar, D. Kuchárová, Ľ. Daniel, Operational Modal Analysis of the Laboratory Steel Truss Structure, Transp. Res. Procedia. 40 (2019) 800–807.
[17] W. Shi, J. Shan, X. Lu, Modal identification of Shanghai World Financial Center both from free and ambient vibration response, Eng. Struct. 36 (2012) 14–26.
[18] J.M.W. Brownjohn, A. Raby, J. Bassitt, A. Antonini, E. Hudson, P. Dobson, Experimental modal analysis of British rock lighthouses, Mar. Struct. 62 (2018) 1–22.
[19] K.W. Min, J. Kim, S.A. Park, C.S. Park, Ambient vibration testing for story stiffness estimation of a heritage timber building, Sci. World J. (2013).
[20] Shabani, A., Feyzabadi, M., & Kioumarsi, M. (2022). Model updating of a masonry tower based on operational modal analysis: The role of soil-structure interaction. Case Studies in Construction Materials, 16, e00957.
[21] Ni, Y. C., Alamdari, M. M., Ye, X. W., & Zhang, F. L. (2021). Fast operational modal analysis of a single-tower cable-stayed bridge by a Bayesian method. Measurement, 174, 109048.
[22] Li, J., Bao, T., & Ventura, C. E. (2022). An automated operational modal analysis algorithm and its application to concrete dams. Mechanical Systems and Signal Processing, 168, 108707
[23] Avci, O., Alkhamis, K., Abdeljaber, O., Alsharo, A., & Hussein, M. (2022, March). Operational modal analysis and finite element model updating of a 230 m tall tower. In Structures (Vol. 37, pp. 154-167). Elsevier.
[24] Civera, M., Mugnaini, V., & Zanotti Fragonara, L. (2022). Machine learning‐based automatic operational modal analysis: A structural health monitoring application to masonry arch bridges. Structural Control and Health Monitoring, 29(10), e3028.
[25] SAIDIN, Siti Shahirah, et al. Operational modal analysis and finite element model updating of ultra-high-performance concrete bridge based on ambient vibration test. Case Studies in Construction Materials, 2022, 16: e01117.
[26] Providakis, C. P., Mousteraki, M. G., & Providaki, G. C. (2023). Operational Modal Analysis of Historical Buildings and Finite Element Model Updating Using α Laser Scanning Vibrometer. Infrastructures, 8(2), 37.
[27] K.A. Kvåle, O. Øiseth, A. Rønnquist, Operational modal analysis of an end-supported pontoon bridge, Eng. Struct. 148 (2017) 410–423.
[28] A. Cabboi, F. Magalhães, C. Gentile, Á. Cunha, Automated modal identification and tracking: Application to an iron arch bridge, Struct. Control Heal. Monit. 24 (1) (2017) e1854. doi:10.1002/stc.1854.
[29] S. Diord, F. Magalhães, Á. Cunha, E. Caetano, High spatial resolution modal identification of a stadium suspension roof: Assessment of the estimate’s uncertainty and of modal contributions, Eng. Struct. 135 (2017) 117–135. doi:10.1016/j.engstruct.2016.12.060.
[30] M. Diaferio, D. Foti, M. Mongelli, N.I. Giannoccaro, P. Andersen, Operational Modal Analysis of a Historic Tower in Bari, Springer, New York, (2011) 335–342. doi:10.1007/978-1-4419-9316-8_31.
[31] A.C. Altunişik, O.Ş. Karahasan, A.F. Genç, F.Y. Okur, M. Günaydin, E. Kalkan, S. Adanur, Modal parameter identification of RC frame under undamaged, damaged, repaired and strengthened conditions, Meas. J. Int. Meas. Confed. 124 (2018) 260–276. doi:10.1016/j.measurement.2018.04.037.
[32] A. Bajrić, J. Høgsberg, F. Rüdinger, Evaluation of damping estimates by automated Operational Modal Analysis for offshore wind turbine tower vibrations, Renew. Energy. 116 (2018) 153–163. doi:10.1016/j.renene.2017.03.043.
[33] S. Castellanos-Toro, M. Marmolejo, J. Marulanda, A. Cruz, P. Thomson, Frequencies and damping ratios of bridges through Operational Modal Analysis using smartphones, Constr. Build. Mater. 188 (2018) 490–504. doi:10.1016/j.conbuildmat.2018.08.089.
[34] L. Gaul, H. Albrecht, J. Wirnitzer, Semi-active friction damping of large space truss structures, Shock Vib. 11 (2004) 173–186.
[35] S.A. Mostafavian, M.R. Davoodi, J. Vaseghi Amiri, Experimental determination of the natural frequencies of a full-scale double layer grid with ball joint system, 15th World Conf. Earthq. Eng. (2012).
[36] Salehi, S., Davoodi, M. R., Mostafavian, S. Estimation of Damping for a Double-Layer Grid Using Input-Output and Output-Only Modal Identification Techniques. Civil Engineering Infrastructures Journal, 2020; 53(2): 295-311. doi: 10.22059/ceij.2019.284169.1594
[37] Nabavian, S. R., Davoodi, M. R., Navayi Neya, B., Mostafavian, S. A. Damping estimation of a double-layer grid by output-only modal identification. Scientia Iranica, 2021; 28(2): 618-628. doi: 10.24200/sci.2019.51919.2424
[38] Salehi, S., Mostafavian, S., Davoodi, M. Effect of the frequency spacing on modal damping estimation of a double-layer grid. Sharif Journal of Civil Engineering, 2021; 37.2(1.1): 105-115.
[39] M.R. Davoodi, J.V. Amiri, S. Gholampour, S.A. Mostafavian, Determination of nonlinear behavior of a ball joint system by model updating, J. Constr. Steel Res. 71 (2012) 52–62. doi:10.1016/J.JCSR.2011.11.011.
[40] S.A. Mostafavian, M.R. Davoodi, J. Vaseghi Amiri, Ball joint behavior in a double layer grid by dynamic model updating, J. Constr. Steel Res. 76 (2012) 28–38.
[41] Magalhães, F., Cunha, A., Caetano, E. and Brincker, R. (2010). “Damping Estimation Using Free Decays and Ambient Vibration Tests”, Mechanical Systems and Signal Processing 24 (5), 1274–90.
[42] E. Orlowitz, A. Brandt, Comparison of experimental and operational modal analysis on a laboratory test plate, Measurement. 102 (2017) 121–130. doi:10.1016/j.measurement.2017.02.001.
[43] Mostafavian, S., Nabavian, S. R., Davoodi, M. R., Navayi Neya, B. Output-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data. International Journal of Engineering, 2019; 32(12): 1753-1761. doi: 10.5829/ije.2019.32.12c.08
[44] R. Brincker, L. Zhang, P. Andersen, “Modal Identification from Ambient Responses Using Frequency Domain Decomposition,” Proc. SPIE - Int. Soc. Opt. Eng. 1 (2000).
[45] R. Brincker, C. Ventura, P.Andersen, Damping estimation by frequency domain decomposition, Proceedings of the 19th international modal analysis conference (IMAC). Vol. 1. 2001.
[46] R. Brincker, L. Zhang, P. Andersen, Modal identification of output-only systems using frequency domain decomposition, Smart Mater. Struct. 10 (2001) 441–445. doi:10.1088/0964-1726/10/3/303.
[47] S. Gade, N. Møller, … H., Frequency domain techniques for operational modal analysis, Testart,Tr H,1st I, (2005).
[48] N. Jacobsen, P. Andersen, R, Applications of frequency domain curve-fitting in the EFDD technique, Core.Ac.Uk.B.-P.I.-X.C.& Expo, (2008).
[49] N.J. Jacobsen, P. Andersen, Operational modal analysis on structures with rotating parts, in: ISMA Conf., 2008.
[50] Tarinejad R, Pourgholi M. Processing of Ambient Vibration Results using Stochastic Subspace Identification based on Canonical Correlation Analysis. Modares Mechanical Engineering 2015; 15 (7) :107-118.
[51] Nabavian, S. R., Davoodi, M. R., Navayi Neya, B., Mostafavian, S. A. Effect of noise on output-only structural identification of beams. Journal of Structural and Construction Engineering, 2020; 7(3): 20-34. doi: 10.22065/jsce.2018.130329.1555
[52] R. Brickner, P. Andersen, understanding stochastic subspace identification, in: Proc. IMAC, Int. Modal Anal. Conf., 2006.
[53] B. Peeters, System identification and damage detection in civil engeneering, (2000).
[54] ARTeMIS Modal 4, Issued by Structural Vibration Solutions AVS. NOVI Science Park, Niles Jernes Vej 10, DK 9220 Aalborg East, Denmark.
[55] A.J. Felber, Development of a hybrid bridge evaluation system, (1994).
[56] R. Brincker, C. Ventura, Introduction to operational modal analysis, John Wiley & Sons, 2015.
[57] M.H. Pashaei, M.R. Davoodi, H. Nooshin, Effects of tightness of bolts on the damping of a mero-type double layer grid, Int. J. Sp. Struct. 21 (2006) 103–110.
[58] A.A. Asoor, M.H. Pashaei, Experimentally study on the effects of type of joint on damping, World Appl. Sci. J. 8 (2010) 608–613.
[59] Y. Park, K. Kim, Semi-active vibration control of space truss structures by friction damper for maximization of modal damping ratio, J. Sound Vib. 332 (2013) 4817–4828.
[60] H. Zhang, Q. Han, Y. Wang, Y. Lu, Explicit modeling of damping of a single-layer latticed dome with an isolation system subjected to earthquake ground motions, Eng. Struct. 106 (2016) 154–165.
[61] L. Gaul, H. Albrecht, J. Wirnitzer, Semi-active friction damping of large space truss structures, Shock Vib. 11 (2004) 173–186.
[62] https://www.dytran.com/Model-5802A-Impulse-Sledge-Hammer-P2578.aspx/
[63] https://www.vibetech.com/mescope
[64] P. Avitabile, Modal Space: Someone Told me that Operating Modal Analysis Produces Better Results and that Damping is Much More Realistic, Exp. Tech. 30 (2006) 25–26. doi:10.1111/j.1747-1567.2006.00102.x.
[65] T. Lauwagie, A Comparison of Experimental, Operational, and Combined Experimental-Operational Parameter Estimation Techniques, Proceedings of Conference on Noise and Vibration Engineering (2006) 2997–3006.
[66] R.J. Allemang, The modal assurance criterion - Twenty years of use and abuse, Sound Vib. 37 (2003) 14–21. doi:10.1016/j.chemgeo.2006.02.014.