1. Oroud IM. The utility of thermal satellite images and land-based meteorology to estimate evaporation from large lakes. Journal of Great Lakes Research. 2019;45(4):703-14.
2. Zhao G, Gao H. Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches. Remote Sensing of Environment. 2019;226:109-24.
3. Allen RG, Smith M, Pereira LS, Raes D, Wright J. Revised FAO procedures for calculating evapotranspiration: irrigation and drainage paper no. 56 with testing in Idaho. Watershed Management and Operations Management 2000. 2000:1-10.
4. McMahon T, Finlayson B, Peel M. Historical developments of models for estimating evaporation using standard meteorological data. Wiley Interdisciplinary Reviews: Water. 2016;3(6):788-818.
5. Maleki S, Mohajeri SH, Mehraein M, Sharafati A. Lake evaporation in arid zones: Leveraging Landsat 8's water temperature retrieval and key meteorological drivers. Journal of Environmental Management. 2024;355:120450.
6. Penman HL. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences. 1948;193(1032):120-45.
7. Thornthwaite CW. An approach toward a rational classification of climate. Geographical review. 1948;38(1):55-94.
8. Ghahreman R, Rahimzadegan M. Calculating net radiation of freshwater reservoir to estimate spatial distribution of evaporation using satellite images. Journal of Hydrology. 2022;605:127392.
9. Nourani V, Fard MS. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Advances in Engineering Software. 2012;47(1):127-46.
10. Du C, Ren H, Qin Q, Meng J, Zhao S. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote sensing. 2015;7(1):647-65.
11. Pomázi I. OECD Environmental Outlook to 2030. Hungarian Geographical Bulletin. 2009;58(2):139.
12. Saco PM, Rodríguez JF, Moreno-de las Heras M, Keesstra S, Azadi S, Sandi S, et al. Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena. 2020;186:104354.
13. Li Y, Tan Z, Zhang Q, Liu X, Chen J, Yao J. Refining the concept of hydrological connectivity for large floodplain systems: Framework and implications for eco-environmental assessments. Water Research. 2021;195:117005.
14. Heckmann T, Cavalli M, Cerdan O, Foerster S, Javaux M, Lode E, et al. Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Science Reviews. 2018;187:77-108.
15. Jancewicz K, Migoń P, Kasprzak M. Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index. Science of the Total Environment. 2019;656:1046-62.
16. Fryirs K. (Dis) Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms. 2013;38(1):30-46.
17. Tarboton DG. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water resources research. 1997;33(2):309-19.
18. Güntner A, Bronstert A. Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas. Journal of Hydrology. 2004;297(1-4):136-61.
19. Lane S, Reaney S, Heathwaite AL. Representation of landscape hydrological connectivity using a topographically driven surface flow index. Water Resources Research. 2009;45(8).
20. Dunn PK, Smyth GK. Generalized linear models with examples in R: Springer; 2018.
21. Huang R, Ma C, Ma J, Huangfu X, He Q. Machine learning in natural and engineered water systems. Water Research. 2021;205:117666.
22. Cheng S, Cheng L, Qin S, Zhang L, Liu P, Liu L, et al. Improved understanding of how catchment properties control hydrological partitioning through machine learning. Water Resources Research. 2022;58(4):e2021WR031412.
23. Londhe SN, Shah S. A novel approach for knowledge extraction from Artificial Neural Networks. ISH Journal of Hydraulic Engineering. 2019;25(3):269-81.
24. Barsi JA, Barker JL, Schott JR, editors. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. IGARSS 2003 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings (IEEE Cat No 03CH37477); 2003: IEEE.
25. Sharaf N, Fadel A, Bresciani M, Giardino C, Lemaire BJ, Slim K, et al. Lake surface temperature retrieval from Landsat-8 and retrospective analysis in Karaoun Reservoir, Lebanon. Journal of applied remote sensing. 2019;13(4):044505.
26. Vanhellemont Q. Automated water surface temperature retrieval from Landsat 8/TIRS. Remote Sensing of Environment. 2020;237:111518.
27. Zhao G, Gao H, Cai X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sensing of Environment. 2020;251:112104.
28. Abreham A. Open water estimation using ground measurement and satellite remote sensing, a case study of lake Tana, Ethiopia. The Netherlands, ITC, Enschede. 2009.
29. Anderson TR, Groffman PM, Walter MT. Using a soil topographic index to distribute denitrification fluxes across a northeastern headwater catchment. Journal of Hydrology. 2015;522:123-34.
30. Beven K, Kirkby M, Schofield N, Tagg A. Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. Journal of hydrology. 1984;69(1-4):119-43.
31. Warburton J, Holden J, Mills AJ. Hydrological controls of surficial mass movements in peat. Earth-Science Reviews. 2004;67(1-2):139-56.
32. Bracken LJ, Wainwright J, Ali G, Tetzlaff D, Smith M, Reaney S, et al. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews. 2013;119:17-34.
33. Thomas I, Jordan P, Mellander P-E, Fenton O, Shine O, Ó hUallacháin D, et al. Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of the Total Environment. 2016;556:276-90.
34. Mulualem GM, Liou Y-A. Application of artificial neural networks in forecasting a standardized precipitation evapotranspiration index for the Upper Blue Nile basin. Water. 2020;12(3):643.
35. Garson GD. A comparison of neural network and expert systems algorithms with common multivariate procedures for analysis of social science data. Social Science Computer Review. 1991;9(3):399-434.
36. Garson GD. Interpreting neural-network connection weights. AI expert. 1991;6(4):46-51.
37. Goh AT. Back-propagation neural networks for modeling complex systems. Artificial intelligence in engineering. 1995;9(3):143-51.