بررسی تاثیر پیوستگی هیدرولوژیکی بر تبخیر از مخازن چاه نیمه های سیستان در طی دوره های هواشناسی مختلف

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 گروه مهندسی عمران/ دانشگاه خوارزمی
2 دانشگاه خوارزمی
چکیده
تبخیر از مخازن می­تواند به کمک دمای استخراجی از تصاویر ماهواره­ای و داده­های هواشناسی اندازه­گیری شده زمینی توسط روابط تجربی مشابه روش PM FAO 56 محاسبه شود. همچنین، با استفاده از شبکه عصبی مصنوعی می­توان تاثیر ورودی­های مختلف را روی یک خروجی مانند تبخیر بررسی نمود. به این منظور، در این تحقیق تاثیر شاخص­های محیطی مختلف روی تبخیر با برآورد درصد اهمیت نسبی آن ها تعیین شده است. دسته اول این معیارها، شاخص­های هواشناسی منطقه می­باشند که شامل سرعت باد، فشار هوا، رطوبت نسبی، تابش و دمای سطح آب مخازن می­شود و دسته دوم شاخص­های پیوستگی هیدرولوژیکی را نشان می­دهد. پیوستگی هیدرولوژیکی به عنوان یکی از عوامل موثر در پدیده­های هیدرولوژیکی و عناصر چرخه آب به کمک شاخص های آن یعنی شاحص طول جریان و شاخص رطوبت توپوگرافیک تعریف و بررسی می­شود. در این تحقیق، اهمیت نسبی معیارهای هواشناسی و شاخص­های پیوستگی در تبخیر تخمین زده شده از چاه نیمه­ها در استان سیستان و بلوچستان و در شرایط هواشناسی مختلف، یعنی دوره­ی وزش بادهای 120 روزه و دوره عدم وزش آن و هم چنین دوره خشکسالی و ترسالی، برآورد شده است. نتایج نشان دهنده­ی تاثیر بالای شاخص رطوبت توپوگرافیک و شاخص طول جریان بر تبخیر می باشد. این تاثیر به نحوی است که در همه­ی شرایط، بیشترین درصد اهمیت نسبی متعلق به این دو شاخص می­باشد. در بین معیارهای هواشناسی نیز تاثیر دمای سطح آب بیشتر از سایر معیارها می باشد. همچنین می­توان نتیجه گرفت که تاثیر شاخص­های پیوستگی روی تبخیر در دوره­های ترسالی نسبت به دوره­های خشکسالی 5 % ییشتر استو این در حالی است که در دوره ی وزش باد 120 روزه شاخص­های هواشناسی نسبت به شرایط عدم وزش باد 10 % تاثیر بیشتری روی تبخیر دارند. به علاوه تاثیر سرعت باد در دوره­های وزش باد 120 روزه 5 % بیشتر از دوره­های عدم وزش آن است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Impact of Hydrological Connectivity on Evaporation from Sistan's Chah-Nimeh Reservoirs During Different Meteorological Periods

نویسندگان English

Saeed Maleki 1
Seyed Hossein Mohajeri 1
Mojtaba Mehraein 2
1 Civil Eng. Department/ Kharazmi Uni.
2 Kharazmi university
چکیده English

This study leverages satellite imagery and on-site meteorological data to empirically assess reservoir evaporation using the PM FAO 56 method and an artificial neural network. Focused on Sistan and Baluchistan provinces, it categorizes indicators into meteorological factors—such as wind speed, air pressure, relative humidity, and lake surface temperature—and hydrological connectivity indices, including the topographic wetness and flow length indices. These indices are evaluated under various hydrological conditions like the 120-day wind period, non-windy periods, and flood discharge periods. Results highlight the significant influence of the topographic wetness and flow length indices on evaporation, especially during flood discharge periods where their impact is 5% higher than in water storage periods. Additionally, meteorological indices have a 10% greater effect during windy conditions, with wind speed being notably more influential during the 120-day wind period. This research underlines the importance of integrating meteorological and hydrological data for comprehensive water resource management and suggests the potential of using similar approaches in other regions and under different climatic conditions, paving the way for future studies in water conservation and management strategies in response to global environmental changes.

کلیدواژه‌ها English

Hydrological connectivity
evaporation
Water surface temperature
artificial neural network
Relative importance
Wind of 120 days
1. Oroud IM. The utility of thermal satellite images and land-based meteorology to estimate evaporation from large lakes. Journal of Great Lakes Research. 2019;45(4):703-14.
2. Zhao G, Gao H. Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches. Remote Sensing of Environment. 2019;226:109-24.
3. Allen RG, Smith M, Pereira LS, Raes D, Wright J. Revised FAO procedures for calculating evapotranspiration: irrigation and drainage paper no. 56 with testing in Idaho. Watershed Management and Operations Management 2000. 2000:1-10.
4. McMahon T, Finlayson B, Peel M. Historical developments of models for estimating evaporation using standard meteorological data. Wiley Interdisciplinary Reviews: Water. 2016;3(6):788-818.
5. Maleki S, Mohajeri SH, Mehraein M, Sharafati A. Lake evaporation in arid zones: Leveraging Landsat 8's water temperature retrieval and key meteorological drivers. Journal of Environmental Management. 2024;355:120450.
6. Penman HL. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences. 1948;193(1032):120-45.
7. Thornthwaite CW. An approach toward a rational classification of climate. Geographical review. 1948;38(1):55-94.
8. Ghahreman R, Rahimzadegan M. Calculating net radiation of freshwater reservoir to estimate spatial distribution of evaporation using satellite images. Journal of Hydrology. 2022;605:127392.
9. Nourani V, Fard MS. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Advances in Engineering Software. 2012;47(1):127-46.
10. Du C, Ren H, Qin Q, Meng J, Zhao S. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote sensing. 2015;7(1):647-65.
11. Pomázi I. OECD Environmental Outlook to 2030. Hungarian Geographical Bulletin. 2009;58(2):139.
12. Saco PM, Rodríguez JF, Moreno-de las Heras M, Keesstra S, Azadi S, Sandi S, et al. Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena. 2020;186:104354.
13. Li Y, Tan Z, Zhang Q, Liu X, Chen J, Yao J. Refining the concept of hydrological connectivity for large floodplain systems: Framework and implications for eco-environmental assessments. Water Research. 2021;195:117005.
14. Heckmann T, Cavalli M, Cerdan O, Foerster S, Javaux M, Lode E, et al. Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Science Reviews. 2018;187:77-108.
15. Jancewicz K, Migoń P, Kasprzak M. Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index. Science of the Total Environment. 2019;656:1046-62.
16. Fryirs K. (Dis) Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms. 2013;38(1):30-46.
17. Tarboton DG. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water resources research. 1997;33(2):309-19.
18. Güntner A, Bronstert A. Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas. Journal of Hydrology. 2004;297(1-4):136-61.
19. Lane S, Reaney S, Heathwaite AL. Representation of landscape hydrological connectivity using a topographically driven surface flow index. Water Resources Research. 2009;45(8).
20. Dunn PK, Smyth GK. Generalized linear models with examples in R: Springer; 2018.
21. Huang R, Ma C, Ma J, Huangfu X, He Q. Machine learning in natural and engineered water systems. Water Research. 2021;205:117666.
22. Cheng S, Cheng L, Qin S, Zhang L, Liu P, Liu L, et al. Improved understanding of how catchment properties control hydrological partitioning through machine learning. Water Resources Research. 2022;58(4):e2021WR031412.
23. Londhe SN, Shah S. A novel approach for knowledge extraction from Artificial Neural Networks. ISH Journal of Hydraulic Engineering. 2019;25(3):269-81.
24. Barsi JA, Barker JL, Schott JR, editors. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. IGARSS 2003 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings (IEEE Cat No 03CH37477); 2003: IEEE.
25. Sharaf N, Fadel A, Bresciani M, Giardino C, Lemaire BJ, Slim K, et al. Lake surface temperature retrieval from Landsat-8 and retrospective analysis in Karaoun Reservoir, Lebanon. Journal of applied remote sensing. 2019;13(4):044505.
26. Vanhellemont Q. Automated water surface temperature retrieval from Landsat 8/TIRS. Remote Sensing of Environment. 2020;237:111518.
27. Zhao G, Gao H, Cai X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sensing of Environment. 2020;251:112104.
28. Abreham A. Open water estimation using ground measurement and satellite remote sensing, a case study of lake Tana, Ethiopia. The Netherlands, ITC, Enschede. 2009.
29. Anderson TR, Groffman PM, Walter MT. Using a soil topographic index to distribute denitrification fluxes across a northeastern headwater catchment. Journal of Hydrology. 2015;522:123-34.
30. Beven K, Kirkby M, Schofield N, Tagg A. Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. Journal of hydrology. 1984;69(1-4):119-43.
31. Warburton J, Holden J, Mills AJ. Hydrological controls of surficial mass movements in peat. Earth-Science Reviews. 2004;67(1-2):139-56.
32. Bracken LJ, Wainwright J, Ali G, Tetzlaff D, Smith M, Reaney S, et al. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews. 2013;119:17-34.
33. Thomas I, Jordan P, Mellander P-E, Fenton O, Shine O, Ó hUallacháin D, et al. Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of the Total Environment. 2016;556:276-90.
34. Mulualem GM, Liou Y-A. Application of artificial neural networks in forecasting a standardized precipitation evapotranspiration index for the Upper Blue Nile basin. Water. 2020;12(3):643.
35. Garson GD. A comparison of neural network and expert systems algorithms with common multivariate procedures for analysis of social science data. Social Science Computer Review. 1991;9(3):399-434.
36. Garson GD. Interpreting neural-network connection weights. AI expert. 1991;6(4):46-51.
37. Goh AT. Back-propagation neural networks for modeling complex systems. Artificial intelligence in engineering. 1995;9(3):143-51.