مدل‌سازی فیزیکی بستر ماسه‌ای به روش بارش پرده‌ای

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری گروه مهندسی ژئوتکنیک، دانشکده فنی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
2 استادیار گروه مهندسی ژئوتکنیک، دانشکده فنی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
3 استاد پژوهشکده مهندسی ژئوتکنیک، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله
چکیده
یکی از مهم­ترین جنبه‌های مدل­ سازی فیزیکی در مهندسی ژئوتکنیک، قابلیت تکرار در آماده ­سازی بستر می­ باشد. روش بارش در آماده­ سازی بستر به دلیل ایجاد شرایط مطلوب و سرعت مدل­ سازی بالا، یکی از مطمئن­ ترین روش ها به شمار می ­آید. در این تحقیق روشــی جدید مبنی بر بارش متحرک پرده­ای با دو پرده بارش برای بازسازی نمونه بزرگ مقیاس توسعه یافته است. تاثیر پارامترهای، عرض پرده بارش، سرعت حرکت، تعداد پرده بارش و ارتفاع سقوط ذرات بر درصد تراکم نسبی و شدت بارش با آزمایش بر روی ماسـه 161 فیروزکوه مورد مطالعه قرار گرفته است. بررسی نتایج نشان داد که پارامتر متغیر تعداد پرده بارش همانند پارامترهای عرض بارش، سرعت حرکت و ارتفاع سقوط بر درصد تراکم نسبی و شدت بارش تاثیر قابل توجهی داشته و با تغییر در پارامترهای موثر، بازه گسترده­ای از تراکم نسبی بین 12 تا 93 درصد قابل دستیابی است. مقایسه نتایج آزمایش­ها یک و دو پرده بارش نشان داد که استفاده از دو پرده بارش با افزایش حجم خروجی ماسه و افزایش شدت بارش، درصد تراکم نسبی برابر با صفحه بارش تک شیار داشته و پرده های بارش بصورت مجزا عمل کرده و آماده ­سازی بستر را با سرعتی بالاتر امکان ­پذیر می ­نماید.

 

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physical Modeling of Sand Beds Using a New Approacha of Rainer System

نویسندگان English

ehsan saeedi 1
Arash Razmkhah 2
Mohsen Kamalian 3
Faradjollah Askari 3
1 Department of Civil Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Ahang Bld., Abouzar Bld., Basij Highway, Tehran, Iran.
2 Department of Civil Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Ahang Bld., Abouzar Bld., Basij Highway, Tehran, Iran.
3 Geotechnical Engineering Research Centre, International Institute of Earthquake Engineering and Seismology (IIEES), No. 21, Arghavan Street, North Dibajee, Farmanieh, Tehran, Iran.
چکیده English

 It is common to apply physical modeling for a more precise investigation of phenomena in geotechnical engineering. The reconstitution of specimens is an appropriate way to study soil behavioral parameters in laboratories due to the restrictions of acceptable undisturbed sample preparation. Reconstitution of the sand sample is one of the most well-known challenges of physical modeling. One of the most significant aspects of physical modeling geotechnical engineering is the repeatability of bed preparation. The reconstitution of sample and bed preparation in physical modeling are divided into two general approaches, depending on the type of porosity control employed. Methods where the porosity is adjusted after deposition, is only appropriate for dense beds with diverse layers. This category includes the methods of tamping and vibration. Another methods where the porosity is controlled during deposition, which aim at obtaining any porosity within the maximum-minimum porosity limits of the material that is pluviation technique. Because of the favorable conditions and prompt modeling it enables, the preparation of layers by the pluviation technique is one of the most reliable bed preparation methods. The pluviation technique can be divided into three categories, air pluviation, vacuum pluviation, and water pluviation. In addition, each category is divided into three minor subgroups that monitor sand-rain outflow intensity as follows, controlling the deposition intensity of sand output from single or multiple nozzles of various shapes, controlling the deposition intensity of the sand output from single or multiple sieves, controlling the deposition intensity of the sand output from longitudinal aperture (curtain pluviation). The effective parameters on pluviation system are deposition intensity and fall height. Deposition intensity, itself, is affected by aperture width, traveling pluviator speed, and the number of opening. The sand reconstitution technique must properly provide real sample conditions in a wide range of soil density (loose to dense), the uniform void ratio in the entire reconstructed specimen, fully saturated conditions for undrained status, the samples should be well mixed without particle size segregation, regardless of particle size gradation and simulation of the studied depositional fabric characteristic.

In this research, a novel approach focusing on a traveling sand pluviator with two apertures was developed for the reconstitution of large-scale samples. Experiments on Iran’s Firuzkuh sand (#161) _Silica sand with fine-grained content of about 1% that is known as the standard sand in Iran and has been the most widely used sand for laboratory studies_ evaluated the effects of opening width, traveling pluviator speed, fall height, and number of openings on deposition intensity and relative density. The results showed that a decrease in deposition intensity is correlated with a decrease in aperture width and an increase in traveling pluviator speed, which significantly enhances relative density. With changes in the effective parameters, a broad range of relative densities could be obtained—from 12 to 93 percent. Comparisons between the findings of the experiments revealed that double-aperture pluviation plate, given the increases in sand outlet and deposition intensity, had a density equivalent to that of single-aperture pluviation plate whit; moreover, each aperture behaved as separate, resulting in prompt sand bed preparation. The findings also revealed that increase in fall height leads to increase in relative density.

کلیدواژه‌ها English

air pluviation
traveling sand pluviator
relative density
firuzkuh sand (#161)
Physical Modeling
1. Saeedi E, Razmkhah A, kamalian M, Askari F. Bearing Capacity Evaluation of Skirted Reinforced Sand Slopes by Physical Modeling. MCEJ 2024; 24 (1):83-96 [In Persian]
2. Stuit, H. G. 1995. “Sand in the geotechnical centrifuge.” Ph.D. thesis, Tech. Univ.
3. Miura, S., and Toki, S. 1982. “A sample preparation method and its effect on static and cyclic deformation-strength properties of sand.” Soils found 22, no. 1 (March): 61-77.

4. Vaid, Y. P., and Negussey, D. 1988. “Preparation of reconstituted sand specimens.” In Advanced Triaxial Testing of Soil and Rock, West Conshohocken, PA: ASTM International, 1988.
5. Butterfield, R., and Andrawes, K. Z. 1970. “An air activated sand spreader for forming uniform sand beds.” Geotechnique 20, no. 1 (March): 97-100.
6. DeGregorio, V. B. 1990. “Loading systems, sample preparation, and liquefaction.” J of Geotech Eng 116, no. 5 (May): 805–821.
7. Lo Presti, D. C. F., Pedroni, S., and Crippa, V. 1992. “Maximum dry density of cohesionless soils by pluviation and by ASTM D4253-83: A comparative study.” Geotech Test J 15, no. 2: 180–189.
8. Kolbuszewski, J. J. 1948. “An experimental study of the maximum and minimum porosities of sands.” Paper presented at the Second International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, Netherlands.
9. Abdoun, T., Gonzalez, M. A., Thevanayagam, S., Dobry, R., Elgamal, A., Zeghal, M., Mercado, V. M., and El Shamy, U. 2013.
“Centrifuge and large-scale modeling of seismic pore pressures in sands: Cyclic strain interpretation.” J Geotech Geoenviron Eng 139, no. 8 (August): 1215–1234.
10. Yniesta, S., Cappa, R., Lemnitzer, A., and Brandenberg, S. J. 2015. “Centrifuge Testing of Levees: Saturation Techniques during Model Construction.” Paper presented at the IFCEE 2015, ‏San Antonio, Texas, March.
11. Gade, V. K., and Dasaka, S. M. 2016. “Assessment of air pluviation using stationary and movable pluviators.” J Mater Civ Eng 29, no. 5 (May): 06016023.
12. Ghosh, P., Srinivasan, V., and Srivastava, S. 2016. “A Systematic Approach towards the Assessment of Sand Bed Preparation Using the Air Pluviation Technique.” Paper presented at Geo-Chicago 2016, Chicago, Illinois.
13. Mohammadi S, Ajalloeian R. Investigation of Desirability of Sand Pluviation Technique in order to Sample Making of Sandy Soils for Laboratory Models. MCEJ 2013; 13 (5):53-63 [In Persian]
14. Al-Yasir, Abdullah Talib, and Abbas Jawad Al-Taie. "A new sand raining technique to reconstitute large sand specimens." Journal of the Mechanical Behavior of Materials 32, no. 1 (2023): 20220228. https://doi.org/10.1515/jmbm-2022-0228.
15. Kolbuszewski, J., and Jones, R. H. 1961. “The preparation of sand samples for laboratory testing.” Paper presented at the Midland Soil Mechanics and Foundation Engineering Society, Birmingham, U.K.
16. Miura, S., and Toki, S. 1983. “Sample preparation method and its effect on static and cyclic deformation — strength properties of sand.” Int J Rock Mech Min Sci 20, no. 1 (February): A6.
17. Fretti, C., Lo Presti, D. C. F., and Pedroni, S. 1995. “A pluvial deposition method to reconstitute well-graded sand specimens.” Geotech Test J 18, no. 2: 292–298.
18. Hossain, M. Z., and Ansary, M. A. 2018. “Development of a portable traveling pluviator device and its performance to prepare uniform sand specimens.” Innov Infrastruc. Solut 3, no. 1 (June): 53.

19. Lo Presti, D. C. F., Berardi, R., Pedroni, S., and Crippa, V. 1993. “A new traveling sand pluviator to reconstitute specimens of well-graded silty sands.” Geotech Test J 16, no. 1: 18–26.
20. Tabaroei, A., Abrishami, S., and Hosseininia, E. S. 2017. “Comparison between two different pluviation setups of sand specimens.” J Mater Civ Eng 29, no. 10 (October): 04017157.
21. Abdollahi, M., & Bolouri Bazaz, J. 2017. “Reconstitution of sand specimens using a rainer system.” International Journal of Engineering, 30(10), 1451-1463.
22. Lagioia, R., Sanzeni, A., and Colleselli, F. 2006. “Air, water, and vacuum pluviation of sand specimens for the triaxial apparatus.” Soils Found 46, no. 1 (February): 61–67.
23. Dave, T. N., and Dasaka, S. M. 2012. “Assessment of portable traveling pluviator to prepare reconstituted sand specimens.” Geomech Eng 4, no.2 (June): 79–90.
24. Gade, V. K., and Dasaka, S. M. 2015. “Development of a mechanized traveling pluviator to prepare reconstituted uniform sand specimens.” J Mater Civ Eng 28, no. 2 (February): 04015117.
25. Bolouri Bazaz, J., Zadehmohamad, M., & Hashemi, S. S. 2018. “Developing a Portable Curtain Sand Pluviator for Reconstitution of Soil Models.” Modares Civil Engineering journal, 18(1), 231-242.

26. Kazemi, M., & Bolouri Bazaz, J. 2017. “Reconstruction of a Large Scale Sand Specimen Using a Sand Curtain Rainer System.” Journal of Engineering Geology, 11(2), 277-298.

27. Tatsuoka, F., Muramatsu, M., and Sasaki, T. 1982. “Cyclic undrained stress-strain behavior of dense sands by torsional simple shear test.” Soils found 22, no. 2 (June): 55-70.

28. Mulilis, J. P. 1975. “The effects of method of sample preparation on the cyclic stress-strain behaviour of sands.” Technical Report No, HERC 75-18, Univ. of California at Berkeley, Earthquake engineering research center.
29. Vaid, Y. P., and Negussey, D. 1984. “Relative density of pluviated sand samples.” Soils Found 24, no. 2 (June): 101-105.

30. Changizi, F., Razmkhah, A., Ghasemzadeh, H., & Amelsakhi, M. 2022. “Behavior of Geocell-Reinforced Soil Abutment Wall.” A Physical Modeling. Journal of Materials in Civil Engineering, 34(3), 04021495.

31. Jahanian, M. S., Razmkhah, A., Ghasemzadeh, H., & Vosoughifar, H. 2022. “Bearing capacity of the strip footing located on the sand reinforced by geocell under eccentric load”. Arabian Journal of Geosciences, 15(15), 1328.