مدلسازی عددی اثر تبخیر بر شوری آب خلیج فارس

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 کارشناس ارشد سازه های دریایی، دانشگاه تربیت مدرس
2 دانشیار دانشگاه تربیت مدرس
3 دکتری سازه های دریایی، دانشگاه تربیت مدرس
چکیده
محدود بودن محیط آبی خلیج فارس و قرار گرفتن در ناحیه خشک و بیابانی سبب شده است که تبخیر به عنوان یکی از مهم‌ترین پارامترهای اقلیمی نقش بسزایی در روند شوری و تبادل آب خلیج فارس داشته باشد. از آنجایی که با روند گرم شدن دمای هوای کره زمین و کاهش نزولات جوی از طرف دیگر، پیش بینی میشود تبخیر روند افزایشی داشته باشد، بررسی اثر این پدیده بر شوری خلیج فارس و تاسیسات ساخته شده علی الخصوص عملکرد آب شیرین کن ها اهمیت بسزایی دارد. از اینرو تحقیق حاضر، با هدف بررسی گردش آب در خلیج فارس و ارزیابی تأثیر مستقیم تبخیر آب بر شوری و تبادل آب با دریای عمان انجام شده است. در این راستا، مدلسازی عددی جریان با لحاظ نمودن اثر تبخیر در محدوده دریای عمان و خلیج فارس با استفاده از مدل سه بعدی بسته نرم‌افزاری Mike3-Flow Model FM انجام شده و داده‌های موردنیاز برای اجرای مدل هیدرودینامیکی از مدل HYCOM و داده‌های جوی مورد نیاز از مدل ECMWF استخراج شده است. برای ارزیابی و صحت سنجی مدل عددی، خروجی های مدل هیدرودینامیک با داده‌های TPXO و ترازهای جزر و مدی مقایسه و با استفاده از پارامترهای آماری ضریب همبستگی و مجذور میانگین مربع خطا محاسبه شده است. نتیجه‌ی این مطالعه نشان می‌دهد میزان آب ورودی تجمعی به خلیج فارس با درصد افزایش تبخیر رابطه نسبتأ خطی دارد. همچنین افزایش تبخیر آب از سطح خلیج فارس اثر شدیدی در شوری خلیج فارس داشته و این اثر در سطح خلیج فارس گسترده اما متغیر است، به طوریکه نواحی نزدیک تر به تنگه هرمز اثر کمتری از افزایش تبخیر گرفته اند و افزایش شوری در  نواحی کم عمق شمالی و سواحل جنوبی موجب افزیش میانگین شوری خلیج فارس شده است. بصورت میانگین، افزایش 50 درصدی تبخیر موجب افزایش شوری آب به میزان 3 psu و افزایش 100 درصدی تبخیر موجب افزایش شوری آب به میزان 6 psu شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical modeling of the evaporation effect on the salinity of Persian Gulf

نویسندگان English

Samad Rasoulpour 1
حسن اکبری 2
Ahmad Rezaee mazyak 3
1 M.Sc. of marine structures, University of Tarbiat Modares
2 associate Professor, Tarbiat Modares University
3 PhD of marine structures, University of Tarbiat Modares
چکیده English

The semi-closed geometry of the Persian Gulf and its location in a dry and desert area have caused evaporation as one of the most important climatic parameters affecting the water salinity and water exchange between Oman Sea and Persian Gulf. Since the global warming as well as the decrease of precipitation will increase the evaporation in future, it is very important to investigate the effect of this phenomenon on the salinity of the Persian Gulf and its effect on the facilities, especially the desalination plants in the Persian Gulf. Therefore, this research have been carried out with the aim of investigating the circulation of water in the Persian Gulf and evaluating the direct effect of water evaporation on salinity and water exchange with the Sea of Oman. In this regard, the hydrodynamic modeling by considering the effect of evaporation in the Oman Sea and the Persian Gulf has been done using the three-dimensional Mike3-Flow Model.

The input hydrodynamic data is extracted from the HYCOM model and the required atmospheric data is extracted from the ECMWF model. To evaluate and validate the model, numerical results have been compared with TPXO data and tidal levels by means of statistical parameters. The results of this study show that the amount of cumulative water entering the Persian Gulf has a relatively linear relationship with the percentage of evaporation. Also, the increase in water evaporation from the surface of the Persian Gulf has a strong effect on the salinity of the Persian Gulf, and this effect is widespread but variable in the surface of the Persian Gulf, so that the areas closer to the Strait of Hormuz are less affected by the increase in evaporation, and the increase in salinity in the shallow northern as well as in the southern coasts have caused an increase in the average salinity of the Persian Gulf. On average, a 50% increase in evaporation increases the water salinity by 3 psu and a 100% increase in evaporation causes an increase in water salinity by 6 psu.

کلیدواژه‌ها English

hydrodynamics
Numerical simulation
Persian Gulf
evaporation
water salinity
[1] R. Michael Reynolds, “Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman-Results from the Mt Mitchell expedition,” Mar. Pollut. Bull., vol. 27, no. C, pp. 35–59, 1993, doi: 10.1016/0025-326X(93)90007-7.
[2] A. H. Meshal and H. M. Hassan, “Evaporation from the coastal water of the central part of the Gulf,” Arab Gulf J. Sci. Res., vol. 4, no. 2, pp. 649–655, 1986.
[3] E. K. Paleologos, M. T. Al Nahyan, and S. Farouk, “Risks and threats of desalination in the Arabian Gulf,” IOP Conf. Ser. Earth Environ. Sci., vol. 191, no. 1, 2018, doi: 10.1088/1755-1315/191/1/012008.
[4] H. D. Ibrahim and Elfatih A.B. Eltahir, “Investigation of the Impact of Desalination on the Salinity of the Persian Gulf,” Massachusetts Institute of Technology, 2017. [Online]. Available: http://hdl.handle.net/1721.1/113478
[5] H. D. Ibrahim and E. A. B. Eltahir, “Impact of Brine Discharge from Seawater Desalination Plants on Persian/Arabian Gulf Salinity,” J. Environ. Eng., vol. 145, no. 12, p. 04019084, 2019, doi: 10.1061/(asce)ee.1943-7870.0001604.
[6] O. Mahpeykar and M. Khalilabadi, “Numerical modelling the effect of wind on Water Level and Evaporation Rate in the Persian Gulf,” vol. 5, no. 1, 2021.
[7] W. E. Johns, F. Yao, D. B. Olson, S. A. Josey, J. P. Grist, and D. A. Smeed, “Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf,” J. Geophys. Res. Ocean., vol. 108, no. 12, 2003, doi: 10.1029/2003jc001881.
[8] Shenn-Yu Chao, T. W. Kao, and K. R. Al-Hajri, “A numerical investigation of circulation in the Arabian Gulf,” J. Geophys. Res., vol. 97, no. C7, 1992, doi: 10.1029/92jc00841.
[9] S. A. Swift and A. S. Bower, “Formation and circulation of dense water in the Persian/Arabian Gulf,” J. Geophys. Res. C Ocean., vol. 108, no. 1, pp. 4–1, 2003, doi: 10.1029/2002jc001360.
[10] F. Yao and W. E. Johns, “A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation,” J. Geophys. Res. Ocean., vol. 115, no. 11, pp. 1–17, 2010, doi: 10.1029/2009JC005781.
[11] S. Pous, P. Lazure, and X. Carton, “A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability,” Cont. Shelf Res., vol. 94, pp. 55–70, 2015, doi: 10.1016/j.csr.2014.12.008.
[12] ماه پیکر, امید, خلیل ابادی, محمدرضا, کنارکوهی, کریم. بررسی اثر اروندرود بر تغییر شوری خلیج‌فارس با استفاده از مدلسازی عددی. مجله علوم و فنون دریایی, 1400; 20(3): 50-65.
[13] فرخی مقدم, صفیه, علی اکبری بیدختی, عباسعلی, احمدی گیوی, فرهنگ, عظام, مجتبی. "مطالعه تغییرپذیری پارامترهای فیزیکی(دما و شوری) آب‌های خلیج فارس ناشی از تغییرات اقلیم با استفاده از یک مدل‌سازی عددی و برخی داده‌های اندازه‌گیری". فصلنامه علمی علوم زمین, 1400; 31(1): 63-70.
[14] DHI, “DHI MATLAB Toolbox: User Guide,” vol. 19, 2014.
[15] UNESCO, “The practical salinity scale 1978 and the international equation of state of seawater.” UNESCO technical papers in marine science, p. 36, 1981.
[16] ح. قائمی, “مطالعه و بررسی پدیده فراجوشی در دریای عمان با استفاده از مدل Mike,” دانشگاه هرمزگان, 1397. [Online]. Available: https://ganj.irandoc.ac.ir/#/articles/edb0524f6836764e930b9761ad35848f
[17] M. Iqbal, An Introduction to Solar Radiation. British Columbia: Elsevier Inc, 1983. doi: https://doi.org/10.1016/B978-0-12-373750-2.X5001-0.
[18] G. Lindh and M. Falkenmark, Hydrologi : en inledning till vattenresursläran. 1972.
[19] A. Elhakeem, W. Elshorbagy, and T. Bleninger, “Long-term hydrodynamic modeling of the Arabian Gulf,” Mar. Pollut. Bull., vol. 94, no. 1–2, pp. 19–36, 2015, doi: 10.1016/j.marpolbul.2015.03.020.
[20] J. Kämpf and M. Sadrinasab, “The circulation of the Persian Gulf: A numerical study,” Ocean Sci., vol. 2, no. 1, pp. 27–41, 2006, doi: 10.5194/os-2-27-2006.
[21] B. Kamranzad, “Persian Gulf zone classification based on the wind and wave climate variability,” Ocean Eng., vol. 169, no. October, pp. 604–635, 2018, doi: 10.1016/j.oceaneng.2018.09.020.