پیش‌بینی ارتفاع موج شاخص در بندر امیرآباد با استفاده از روش‌های هوش‌مصنوعی (ANFIS, EANN, SVM) و ارزیابی نتایج آن با مدل عددی سوان

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استاد دانشکده مهندسی عمران، دانشگاه تبریز
2 استاد، دانشکده مهندسی عمران، دانشگاه تبریز
3 دانشکده مهندسی عمران، دانشگاه تبریز
چکیده
ارتفاع موج شاخص، در طراحی و تحلیل سازه­های دریایی و بهره برداری از آنها پارامتر بسیار با اهمیتی می‌باشد در نتیجه پیش‌بینی این پارامتر کمک شایانی به بهبود طراحی و آنالیز سازه‌های دریایی می‌نماید، از روش‌های مدل‌سازی مشخصات امواج می‌توان به مدل‌های عددی، تجربی و هوش مصنوعی اشاره کرد، در این پژوهش از مدل سوان که یکی از انواع مدل­های نسل سوم در مدل‌سازی و تخمین مشخصات امواج است، استفاده شده است. سپس از مدل­های مبتنی بر محاسبات نرم شامل مدل­های منفرد و ترکیبی هوش مصنوعی مانند سیستم استنتاج عصبی‌-‌فازی انطباقی، مدل ماشین بردار پشتیبان و شبکه عصبی مصنوعی احساسی، در پیش‌بینی ارتفاع موج استفاده شده است و از داده­های بویه امیرآباد جهت صحت‌سنجی استفاده شده است. ورودی مدل­ها در این پژوهش پارامتر سرعت باد و خروجی مدل‌ها نیز ارتفاع موج می­باشد. تحلیل مدل­های مختلف با استفاده از سنجه­های آماری اریبی، جذر میانگین مربع خطاها، ضریب پراکندگی و ضریب تبیین، انجام شده است. ارزیابی مدل‌ها توسط آماره­های فوق، حاکی از انطباق قابل قبول ارتفاع موج شاخص بدست آمده از مدل سوان با بویه دارد. همچنین هر سه مدل مبتنی بر هوش مصنوعی مذکور قابلیت پیش­بینی نسبتاً دقیق پارامتر ارتفاع موج را دارند. همچنین مقایسه نتایج مدل­های مبتنی بر هوش مصنوعی نشان داد که مدل ماشین بردار پشتیبان، نسبت به بقیه مدل‌ها، دقیق‌تر است. مدل ماشین بردار پشتیبان به عنوان روشی جایگزین برای مدل سوان یا سایر روش­های عددی، در مواردی که داده‌های ارتفاع موج در دسترس نبوده و یا کیفیت آماری لازم را ندارد نتایج مدل‌سازی را بهبود می‌بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Prediction of significant wave height in Amir Abad Port using artificial intelligence methods (ANFIS, EANN, SVM) and evaluating its results with SWAN numerical model

نویسندگان English

mohammadali lotfollahi-yaghin 1
Alireza Mojtahedi 2
Ata Aghayi 3
Elyaz Sadaghiani 3
1 Professor, Faculty of Civil Engineering, Tabriz University
2 Professor, Faculty of Civil Engineering, Tabriz University
3 Faculty of Civil Engineering, Tabriz University
چکیده English

The significant wave height is a critical parameter in the design and analysis of marine structures, as well as in their operational use. Consequently, predicting this parameter greatly contributes to improving the design and analysis of marine structures. Various modeling approaches for wave characteristics include numerical, empirical, and artificial intelligence models. This study employs the SWAN model, which is a third-generation model for the simulation and estimation of wave characteristics. Furthermore, soft computing models, including individual and hybrid artificial intelligence models such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM), and Emotional Artificial Neural Networks (EANN), have been utilized for wave height prediction, using data from the Amirabad buoy for validation purposes. In this research, the model inputs consist of wind speed, while the outputs are the wave heights. The analysis of the different models was carried out using statistical metrics, including bias, root mean square error, coefficient of variation, and coefficient of determination. The evaluation of the models using these statistics indicates an acceptable agreement between the significant wave heights estimated by the SWAN model and the buoy data. Additionally, each of the three artificial intelligence models mentioned demonstrates a relatively accurate capability in predicting wave height. A comparison of the results from the artificial intelligence models revealed that the Support Vector Machine model exhibited higher accuracy than the others. The Support Vector Machine model serves as an alternative method to the SWAN model or other numerical techniques, enhancing modeling outcomes when wave height data is unavailable or lacks the necessary statistical quality.

کلیدواژه‌ها English

Significant wave height
Amir abad port
Support vector machine
Adaptive Neuro-Fuzzy Inference System
artificial neuron networks
SWAN numerical model
[1] Hajian R. and Amiri M., 2024, Development and Evolution of Maritime Law from the Perspective of International Law. 7th National Congress in Human Sciences, Tehran, Iran. (In Persian)
[2] Bitner-Gregersen EM., Gramstad O., Magnusson AK. and Malila M., 2020. Challenges in Description of Nonlinear Waves Due to Sampling Variability. Journal of Marine Science and Engineering, 8(4), pp: 279.
[3] Naibi R., Bakhtiari M., Sadri Nasab M. and Shahni Karamzadeh N., 2016. Investigating the effect of refractive index and bed roughness on the propagation pattern of wind waves in near-shore areas. Irrigation science and engineering, 39(4), pp: 145-133. (In Persian)
[4] Neary VS., Ahn S., Seng BE., Allahdadi MN., Wang T., Yang Z. and He R., 2020. Characterization of Extreme Wave Conditions for Wave Energy Converter Design and Project Risk Assessment. Journal of Marine Science and Engineering, 8(4), pp: 289.
[5] Mazaheri S. and Kazmininejad MH., 2011. Development of a numerical model for predicting wind waves in the northern Indian Ocean. Research project, National Research Institute of Oceanography and Atmospheric Sciences. (In Persian)
[6] Moeini MH. and Etemad-Shahidi A., 2007. Application of two numerical models for wave hindcasting in Lake Erie. Applied Ocean Research, 29(3), pp: 145-137.
[7] Janssen AEM., 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(11), pp: 1642-1631.
[8] Ris RC., Holthuijsen LH. and Booij N., 1999. A third-generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research, 104(C4), pp: 7681-7667.
[9] Abouhalima M., das Neves L., Taveira-Pinto F. and Rosa-Santos P., 2024. Machine Learning in Coastal Engineering: Applications, Challenges, and Perspectives. Journal of Marine Science and Engineering, 12(4) pp: 638.
[10] Mahdizadeh MM. and Kasbi MN., 2013. Estimation of storm surge dominated wave height in Iranian coastlines of Oman Sea. Journal of Marine Science and Technology, 13(1), pp: 50-41. (In Persian)
[11] Booij N., Ris RC. and Holthuijsen LH., 1999. SWAN: A third-generation wave model for coastal regions. 1. Model description and validation. Journal of Geophysical Research: Oceans, 104 (C4), pp: 7666-7649.
[12] Chen C., Lin H., Guan D., Cai F., Wang Q. and Liu Q., 2024. Enhancing typhoon wave hindcasting with random forests and BP neural networks in the SWAN model. Frontiers in Marine Science, 11, 1472047. https://doi.org/10.3389/fmars.2024.1472047
[13] Goda Y., 1970. Numerical experiments on wave statistics with spectral simulation. Report of the Port and Harbor Research Institute, 9(3), pp: 57-3.
[14] Kamranzad B., Shahidi A., Chegini, V., 2011. Forecasting waves caused by wind in Asalouye using SWAN numerical model. 4th International Offshore Industry Conference, Tehran, Iran. (In Persian)