تحلیل اثر عمق مدفون مخازن بتنی تحت بار انفجاری در خاک‌های رسی لای‌دار

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشیار؛ گروه مهندسی عمران، دانشگاه هرمزگان
2 کارشناسی ارشد؛ مهندسی عمران، دانشگاه آزاد اسلامی واحد بندرعباس
3 دانشجوی دکتری؛ مهندسی عمران، دانشگاه هرمزگان
چکیده
مخازن بتنی مدفون به عنوان زیرساخت‌های عمومی و نظامی با اهمیت ملی و استراتژیک، در صورت آسیب دیدن، می‌توانند منجر به بحران‌های اجتماعی، امنیتی و زیست‌محیطی شوند. از این‌رو، طراحی این سازه‌ها برای مقاومت در برابر بارهای ضربه‌ای ناشی از انفجار از اهمیت ویژه‌ای برخوردار است. همچنین، رفتار خاک‌های رسی لای‌دار در مواجهه با این نوع بارگذاری نیازمند بررسی دقیق است. در این مقاله، به بررسی تأثیر عمق دفن مخازن بتنی تحت بار انفجاری در خاک‌های رسی لای‌دار پرداخته شده است. مدل‌سازی و تحلیل این پدیده با استفاده از نرم‌افزار AUTODYN و نرم‌افزار المان محدود FLAC 2D انجام شده است. در این تحقیق، رفتار مخزن بتنی مدفون در عمق‌های مختلف (۳، ۶، ۸ و ۱۰ متر) تحت بارهای انفجاری ۵۰، ۱۰۰ و ۲۰۰ کیلوگرم TNT مورد بررسی قرار گرفته است. فرض بر این بوده که انفجار سطحی با فشار و فاصله مشخصی از ساختار مخزن رخ داده است و در تحلیل‌ها، ویژگی‌های خاک، سازه و فشار سیال داخل مخزن در نظر گرفته شده است. نتایج نشان می‌دهد که با افزایش عمق مدفون مخزن بتنی، میزان جابجایی سقف و کف مخزن تحت بار انفجاری کاهش می‌یابد. این کاهش ناشی از استهلاک انرژی انفجار در خاک‌های اطراف مخزن است. به‌طور خاص، پس از اعمال بار انفجاری ۵۰ کیلوگرم TNT، با افزایش عمق مدفون مخزن بتنی از ۳ متر به ۶، ۸ و ۱۰ متر، جابجایی سقف مخزن به ترتیب ۵۴٪، ۷۰٪ و ۷۸٪ کاهش یافته است. این نتایج نشان می‌دهد که عمق دفن مخزن تأثیر قابل توجهی بر عملکرد آن در برابر بار انفجاری دارد و می‌تواند به‌طور چشمگیری از آسیب‌های وارد بر سازه جلوگیری کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Effect of Buried Depth of Concrete Tanks under Explosive Load in Layered Clay Soils

نویسندگان English

Mohammad Amiri 1
Mokhtar Dalvand 2
Hadis Karimi 3
1 Associate Professor, University of Hormozgan, Faculty of Engineering
2 Master Student, Islamic Azad University of Bandar Abbas, Faculty of Engineering.
3 Ph.D. Candidate, University of Hormozgan, Faculty of Engineering
چکیده English

Buried concrete tanks serve as critical components of public and military infrastructure, where structural damage can trigger severe social, security, and environmental crises. Consequently, designing these tanks to withstand shock loads from explosions is of paramount importance. Additionally, the behavior of layered clay soils under such loading conditions requires detailed examination. This study investigates the influence of burial depth on the performance of concrete tanks subjected to explosive loads in layered clay soils. The analysis was conducted using AUTODYN and FLAC 2D finite element software. Concrete tanks buried at depths of 3, 6, 8, and 10 meters were analyzed under surface explosions generated by 50, 100, and 200 kg of TNT, with defined pressure and distance parameters. The soil properties, structural characteristics, and internal fluid pressure were incorporated into the model. Results indicate that increasing the burial depth significantly reduces the displacement of the tank roof and floor due to the dissipation of explosion energy in the surrounding soil. For instance, with a 50 kg TNT charge, increasing the burial depth from 3 meters to 6, 8, and 10 meters resulted in roof displacement reductions of 54%, 70%, and 78%, respectively. These findings demonstrate the critical role of burial depth in enhancing structural resilience against explosive loads and mitigating damage.

کلیدواژه‌ها English

Numerical analysis
Concrete tanks
Explosive loads
Burial depth
TNT explosions
[1].Peyman, S. and A. Eskandari, Analytical and numerical study of concrete slabs reinforced by steel rebars and perforated steel plates under blast loading. Results in Engineering, 2023. 19: p. 101319.
[2].Fan, Y., Z. Tan, G. Yang, X. Cui, K. Deng, and B. Tian, Analysis of dynamic behavior and damage mode of shallow buried tunnel due to underwater explosions. Ocean Engineering, 2024. 296: p. 117015.
[3].Kostopoulos, V., G.D. Kalimeris, and E. Giannaros, Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding. Composites Science and Technology, 2022. 230: p. 109330.
[4].Olarewaju, A.J., R.N.S.V. Kameswara, and M.A. Mannan, Response of Underground Pipes to Blast Loads, in Earthquake-Resistant Structures, M. Abbas, Editor. 2012, IntechOpen: Rijeka. p. Ch. 20.
[5].Amiri, M., Ameri Siahouri, M., Ghasemi, S., Salehian, R. , Investigation of the effect of tunnel excavation on the surrounding structures with a superior attitude on the heights and widths of the structures (Case study: Isfahan’s Metro Tunnel). Journal of Tunneling and Underground Space Engineering. (In Persian), 2021. 10(1): p. 57-69.
[6].Zheng, Q., Q. Xu, Z. Shu, D. Yang, W. Chen, N. Akkurt, H. Zhang, L. Lin, X. Zhang, and Y. Ding, A review of advances in mechanical behaviors of the underground energy transmission pipeline network under loads. Gas Science and Engineering, 2023. 117: p. 205074.
[7].Ye, W., Z. Zhou, Y. Bai, Y. Wu, and Y. Chen, Dynamic Response and Damage of Subway Tunnels Subjected to Explosion-Induced Loads. Soil Mechanics and Foundation Engineering, 2024: p. 1-7.
[8].Amiri, M., Dousti, H., Evaluation of the effects of soil improvement using injection technique on the values of displacement and damages inflicted on the buried structure subjected to the propagation of explosion waves (A case study of Isfahan subway tunnel, Soffeh-Azadi route) Tunneling & Underground Space Engineering (TUSE(2021. 10(4): p. 435-452.
[9].Hatef, N., Rahimi, Bahador., Behavior of Shiraz layered clay under alternating simple shear load. Madras technical and engineering, 2002. 8: p. 11-23.
10. Gui, M. and M. Chien, Blast-resistant analysis for a tunnel passing beneath Taipei Shongsan airport–a parametric study. Geotechnical & Geological Engineering, 2006. 24: p. 227-248.
[11].Nader, Q. and M. Shanai, Reinforcement of concrete water tanks by FRP reinforced polymer fibers. 8th National Congress of Civil Engineering, 2014.
[12].Frost, N., M. Taghipur Birgani, and A. Frost, An overview of the studies done on buried storage tanks., in International conference of new achievements in civil engineering, architecture, environment and urban management. 2015.
13.Taghavi Parsa, M.H., Analysis of explosive Loading on Underground Structures under Surface Explosions. Modares Civil Engineering journal, 2020. 19(6): p. 31-39.
[14].Osmi, S.K.C., M. Othman, H. Husen, J. Jelani, and S. Sojipto, BLAST RESPONSE OF UNDERGROUND STRUCTURES SUBJECTED TO EXTERNAL EXPLOSION–A REVIEW. Zulfaqar Journal of Defence Science, Engineering & Technology, 2023. 6(1).
[15].Zhou, L., X. Li, Q. Yan, S. Li, S. Chang, and P. Ren, Test and damage assessment of shallow buried RC tunnel under explosion. Underground Space, 2024. 14: p. 118-137.
[16].Amiri and D.H. Mohammad, The effect of soil layering on the propagation of waves from surface explosions on buried tunnels (Case study of Isfahan metro tunnel, Sefeh-Azadi route). Journal of Tunneling and Underground Space Engineering. (In Persian) 2022. 10(3): p. 311-331.
[17].ASTM, D., Standard test method for specific gravity of soils. Test method A Procedure for Oven-Dried Specimens, 1999.
[18].ASTM, D., Standard test method for direct shear test of soils under consolidated drained conditions. ASTM West Conshohocken, 2011.
[19].Landau, L. and E. Lifshitz, Theory of Elasticity, in Course of Theoretical Physics. 1970, Pergamon: Oxford. p. 13.
[20].Publication No. 123, Rules and criteria for the design and calculation of underground water reservoirs. Program and budget organization, 1992.
[21].Rashiddel, A., M. Kharghani, D. Dias, and M. Hajihassani, Numerical study of the segmental tunnel lining behavior under a surface explosion–Impact of the longitudinal joints shape. Computers and Geotechnics, 2020. 128: p. 103822.
[22].Manual, F.D.U., FLAC 2D User Manual. (2019) ITASCA Consulting Group, Inc. Version 8.10.‌477.
[23].Sakurai, S., Lessons learned from field measurements in tunnelling. Tunnelling and underground space technology, 1997. 12(4): p. 453-460.
[24].Olarewaju, A., M. Mannan, and R. Kameswara, Response of Underground Pipes to Blast Loads. 2012: INTECH Open Access Publisher.
[25].Bouchard, S., J.-S. L’Heureux, J. Johansson, S. Leroueil, and D. LeBoeuf, Blasting induced landslides in sensitive clays, in Landslides and Engineered Slopes. Experience, Theory and Practice. 2018, CRC Press. p. 497-504.
[26].Xin, B., L. Shutao, L. Jingbo, W. Fei, C. Yeqing, C. Longming, and Z. Qing, Experimental study of deep-burial underground structures subjected to multiple 45° side–top far-field explosions. International Journal of Impact Engineering, 2023. 173: p. 104432.
[27].Deng, Q.-L. and X.-W. Ren, An energy method for deformation behavior of soft clay under cyclic loads based on dynamic response analysis. Soil Dynamics and Earthquake Engineering, 2017. 94: p. 75-82.
[28].Hosseini, S.A. and N. Hosseini, Numerical Modeling of Underground Explosion and Response of Buried Structures using Coupled Eulerian-Lagrangian Method. journal of Advanced Defense Science and Technology, 2018. 9(3): p. 325-336.