مطالعه عددی استهلاک انرژی و هوادهی جریان بر روی سرریزهای پلکانی مسطح

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز
2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز،
چکیده
برای جلوگیری از فرسایش­ و کاهش انرژی جنبشی در هنگام عبور جریان از روی سرریز یک سد، باید در انتخاب نوع سرریز دقت لازم را بکار برد. یک راه حل ممکن، استفاده از سرریز پلکانی به جای سرریز صاف (بدون پله) است. سرریز پلکانی از جمله سازه­های هیدرولیکی شناخته شده است که به دلیل داشتن سطح ناهموار، تاثیر زیادی بر استهلاک انرژی جریان دارد. در این تحقیق، مدل­های عددی از سرریز پلکانی دارای شیب­ و پله­های مختلف برای بررسی شرایط جریان مورد بررسی قرار گرفت. برای شبیه سازی­ جریان روباز از نرم افزار ANSYS و مدل آشفتگی k-ε استفاده شد. میدان حل جریان تا رسیدن باقیمانده­ها به مقدار 10-7 ادامه یافت. در تحقیق حاضر، برای بررسی دقیق پدیده اختلاط دو فاز آب و هوا و رفتار سطح آزاد جریان، از شبیه­سازی عددی و با کاربرد مدل Volume of Fluid (VOF) استفاده شد. در مقایسه با مدل­های ساده­تر مانند Mixture که صرفاً بر اساس میانگین­گیری از خواص دو فاز عمل می­کند، مدل VOF با تفکیک دقیق فازها و در نظر گرفتن اثرات سطح مشترک، قادر به شبیه­سازی دقیق­تری از پدیده­هایی مانند اختلاط سیال­ها، جریان­های توربولانسی و انتقال حرارت در جریان­های چندفازی است. بخشی از مشخصات هیدرولیکی که در طراحی سرریزهای پلکانی مدنظر قرار گرفت، شامل فشار بر روی سطوح پله­ها، توزیع سرعت بر روی پله­ها و استهلاک انرژی است. نتایج حاصل از شبیه­سازی عددی با تعدادی از مدل­های آزمایشگاهی مقایسه شد و نتایج حاکی از انطباق قابل قبول مدل عددی با مدل­های فیزیکی بود. نتایج نشان داد که با افزایش دبی جریان و شیب سرریز، استهلاک انرژی جریان کاهش می­یابد. در سرریز 5 پله­ای به ازای دبی 063/0 متر مکعب بر ثانیه، مقدار استهلاک انرژی در شیب 6/26 درجه از 85 درصد به مقدار 82 درصد در شیب 45 درجه رسیده که کاهش 3 درصدی را نشان می­دهد. در یک سرریز با ارتفاع ثابت، با افزایش تعداد پله، مقدار استهلاک انرژی به دلیل کوچک شدن ابعاد پله کاهش می­یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical investigation of energy dissipation and flow aeration on flat stepped spillways

نویسندگان English

Mehdi Shokri Kaveh 1
Farzin Salmasi 2
Akram Abbaspour 1
1 Department of Water Engineering, Faculty of Agriculture, University of Tabriz
2 Department of Water Engineering, Faculty of Agriculture, University of Tabriz
چکیده English

In order to facilitate the release of floods from the dams and to prevent their damage or collapse, a structure called a spillway is used. Due to the natural and variable flow of the input to the reservoirs of the dams, there are times when the river inflow exceeds the consumption amount in the downstream agricultural lands. In these cases, excess water is discharged over the crest of the weir and flows towards the spillway, which causes high velocities. This high velocity creates low pressure areas on the spillway concrete surface, which can cause major damage to the spillway or even endanger the integrity of the dam structure. Therefore, the dam spillway must safely dissipate the kinetic energy. One of the types of weirs is the stepped spillway to facilitate the passage of the flow over the dams. One of the most obvious practical features of stepped spillways compared to other spillways is the considerable energy dissipation along the spillway. Care should be taken in designing and selecting the type of spillway to prevent potential erosion and reduce kinetic energy as the water flow passes over the spillway. One possible solution is to use a stepped spillway instead of a smooth spillway. In this study, a numeral model of a stepped spillway with different steps and slopes is used. For this purpose, ANSYS software is used for modeling free surface with application of k-ε turbulence model. In the present study, numerical simulation using the Volume of Fluid (VOF) model was used to investigate the mixing phenomenon of two phases of air and water of the free surface flow. The flow field was continued until the residuals reached 10-7. Compared to simpler models such as Mixture, which operates solely on the basis of averaging the properties of two phases, the VOF model, is separating the phases and considering the effects of the interface. The VOF model, is capable of more accurate simulation of phenomena such as fluid mixing, turbulent flows, and heat transfer in multiphase flows. A number of hydraulic specifications which are considered in designing the stepped spillways are the pressure on the surface of the steps, velocity distribution and energy dissipation. The results from the numerical models were compared with experimental studies. They showed acceptable agreement with physical simulations. Results show that discharge and spillway slope increment reduces the amount of energy loss. In the spillway with 5 steps, for a discharge of 0.063 m3/s, the amount of energy dissipation at a slope of 26.6 degrees changes from 85 to 82% at a slope of 45 degrees, which shows a decrease of 3%. With the increase in discharge, the flow depth increases and reduces the effect of the roughness of the steps on the upper layers of the flow. Increasing the height of the steps increases the rate of energy dissipation and also increases the occurrence of negative pressures in stepped spillway. In this case, the contact surface between the main flow and the eddy currents increases. With the increase in the height of the steps, the dimensions of the rotating vortices also increase and cause a larger radius of rotation on the steps. The presence of these large rotating vortices separates the flow from the bottom of the steps and reduces the pressure on the surfaces. The number and dimensions of steps can alter the energy dissipation rate. Increase in the number of steps in a spillway with constant height, reduces the energy loss as the result of steps dimensions being shrunk

کلیدواژه‌ها English

ANSYS
Energy Dissipation
numeral simulation
stepped spillway
Turbulence model
Velocity distribution
[1] Felder, S., & Chanson, H. (2013). Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams. Journal of irrigation and drainage engineering, 139(10), 880-887
[2] Chanson, H., Yasuda, Y., & Ohtsu, I. (2002). Flow resistance in skimming flows in stepped spillways and its modelling. Canadian Journal of Civil Engineering, 29(6), 809-819.
[3] Salmasi, F., Abraham, J., & Salmasi, A. (2021). Effect of stepped spillways on increasing dissolved oxygen in water, an experimental study. Journal of Environmental Management, 299, 113600.
[4] Chanson, H. (1995). Hydraulic design of stepped cascades, channels, weirs and spillways. Oxford, UK: Pergamon.
[5] Chanson, H. (1994). Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research, 32(3), 445-460.
[6] Matos, J., Sanchez, M. A. R. T. Í., Quintela, A., & Dolz, J. (1999, August). Characteristic depth and pressure profiles in skimming flow over stepped spillways. In Congress IAHR (Vol. 28).
[7] Chanson, H. (1994). Stepped spillway flows and air entrainment. Canadian journal of civil engineering, 20(3), 422-435.
[8] Chanson, H., & Toombes, L. (2002). Experimental investigations of air entrainment in transition and skimming flows down a stepped chute. Canadian Journal of Civil Engineering, 29(1), 145-156.
[9] Malekzadeh, F, Salmasi, F, Abraham, J, Arvanaghi, H, 2022. Numerical investigation of the effect of geometric parameters on discharge coefficients for broad-crested weirs with sloped upstream and downstream faces. Applied Water Science, 12,110
[10] Savage BM, Johnson MC and Members ASCE, 2001. Flow over ogee spillway: physical and numerical model case study. J Hydr Engin ASCE 127(8):640-649.
[11]‌ Sarkmarian, Saeed, & Ahdian, Javad. (2019). Mathematical modeling of energy loss in stepped spillways using ANSYS-CFX numerical model. Irrigation Science and Engineering, 43(1), 43-56. doi: 10.22055/.2017.22269.1593. In Persian with English abstract.
[12] Farooq, U., Li, S., & Yang, J. (2024). Numerical Analysis of Flow Characteristics and Energy Dissipation on Flat and Pooled Stepped Spillways. Water, 16(18), 2600.
[13] Saqib, N. U., Akbar, M., Pan, H., Ou, G., Mohsin, M., Ali, A., & Amin, A. (2022). Numerical analysis of pressure profiles and energy dissipation across stepped spillways having curved risers. Applied Sciences, 12(1), 448.
[14] Guenther P, Felder S, Chanson H, 2013. Flow aeration, cavity processes and energy dissipation on flat and pooled stepped spillways for embankments, Environ Fluid Mech (2013), 13:503–525
[15] Sorensen, R. M. (1985). Stepped spillway hydraulic model investigation. Journal of hydraulic Engineering, 111(12), 1461-1472.
[16] Peyras, L. A., Royet, P., & Degoutte, G. (1992). Flow and energy dissipation over stepped gabion weirs. Journal of hydraulic Engineering, 118(5), 707-717.
[17] Christodoulou GC, 1993. Energy dissipation on stepped spillways. J. Hydr. Eng. 19(5):644:650.
[18] Chamani MR, Rajaratnam N, 1999. Characteristics of skimming flow over stepped spillways. J. Hydr. Eng. 125(4):361-368.
[19] Chinnarasri, C., & Wongwises, S. (2006). Flow patterns and energy dissipation over various stepped chutes. Journal of irrigation and drainage engineering, 132(1), 70-76.
[20] Salmasi F, Samadi A, (21). Experimental and numerical simulation of flow over stepped spillways, Applied water science, 8 (229): 1-11
[22] Chanson, H. (1996). Prediction of the transition nappe/skimming flow on a stepped channel. Journal of Hydraulic Research, 34(3), 421-429.
[23] Toombes, L., Wagner, C., & Chanson, H. (2008). Flow patterns in nappe flow regime down low gradient stepped chutes. Journal of Hydraulic Research, 46(1), 4-14.
[24] Roushangar K, Akhgar S, Salmasi F, Shiri J, 2017. Neural networks- and neuro-fuzzy-based determination of influential parameters on energy dissipation over stepped spillways under nappe flow regime, ISH Journal of Hydraulic Engineering, 23 (1), 57–62
[25] Nourani, B, Arvanaghi, H, Salmasi, F, 2021. Effects of different configurations of sloping crests and upstream and downstream ramps on the discharge coefficient for broad-crested weirs. Journal of Hydrology, Volume 603, Part B, 126940
[26] Salmasi F, Abraham J, 2022. Energy Loss at the Base of a Free Straight Drop Spillway, B P International, Current Overview on Science and Technology Research. 6, 24- 42, https://doi.org/10.9734/bpi/costr/v6/4047A
[27] Mero, S., & Mitchell, S. (2017). Investigation of energy dissipation and flow regime over various forms of stepped spillways. Water and environment journal, 31(1), 127-137. [18] Salmasi, F., Abraham, J., (2021). Genetic algorithms for optimizing stepped spillways to maximize energy dissipation, Water supply, IWA Publishing, 22 (2), 1255
[28] Roushangar K, Akhgar S, Salmasi F, Shiri J, (2014). Modeling energy dissipation over stepped spillways using machine learning approaches. Journal of Hydrology. (508): 254–265