ارائه روش جدید سلامت‌سنجی پایه‌های بتنی پل‌ها با استفاده از همبستگی بین داده سنسورها

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس
چکیده
پایه‌ها، المان‌های طراحی حیاتی برای پل تحت بارگذاری زلزله هستند، اطمینان از پایداری و سلامت آن‌ها برای ایمنی کلی پل بسیار مهم است. متداول‌ترین روش‌های موجود برای تشخیص آسیب که عمدتاً در عرشه پل مورد استفاده قرار می‌گیرد، روش‌های مودال هستند. این روش‌ها به دلایل مختلف دارای خطا در یافتن آسیب در سازه هستند. از طرفی این روش‌ها نیازمند اطلاعات پایه سالم هستند. در این پژوهش با ارائه روشی جدید و استفاده از مفهوم همبستگی، سعی شده با حداقل خطا و بدون داشتن اطلاعات پایه سالم، وجود آسیب و محل آن تشخیص داده شود. بدین منظور، بلندترین پایه از رمپ A مجموعه پل‌های شهید باکری تهران به عنوان پایه مورد مطالعه انتخاب و با استفاده از نقشه‌های چون-ساخت مدل غیرخطی دقیق در نرم‌افزار opensees ساخته شد. آسیب ایجاد شده در مدل، به صورت کاهش سختی در مصالح بتنی و کاهش سطح مقطع در مصالح فولادی مقطع بوده است. محل اعمال آسیب نیز در ارتفاع پایه در سه ناحیه 15، 25 و 35 درصد ارتفاع به صورت جداگانه اعمال شده است. داده‌ها با استفاده از سنسورهای سرعت‌سنج در ارتفاع پایه جمع آوری شد و در انتها با استفاده از مفهوم همبستگی و ارائه اندیس خرابی مبتنی بر این مفهوم، توانایی اندیس ارائه شده در یافتن وجود آسیب و محل آن در سناریوهای مختلف آسیب ارزیابی گردید. نتایج بدست آمده، نشان دهنده عملکرد مناسب این اندیس در تشخیص خرابی در سناریوهای مختلف و شدت های آسیب بین 10 تا 30 درصد می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Presenting a novel damage index of concrete piers of bridges using correlation between sensor data

نویسندگان English

Reza Zamanian
Farhad Daneshjoo
Masoud Soltani Mohammadi
Department of Earthquake Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran 14115-397, Iran
چکیده English

Piers are vital design elements for a bridge under seismic loading; ensuring their stability and health is crucial for the overall safety of the bridge. The most common methods available for detecting damage, primarily used in the bridge deck, are modal methods. These methods have errors in detecting damage in the structure for various reasons. On the other hand, these methods require healthy pier information. In addition to modal methods, other methods based on energy and data analysis using wavelet transform also exist, the shortcomings of which are mentioned in this article. The fundamental problem that most methods face is the existence of healthy pier information, and furthermore, parameters that should be used to detect damage must be computable or measurable. In this study, a new method is presented, using the concept of correlation, to detect the presence and location of damage with minimal error and without having healthy pier information. To this end, the tallest pier of Ramp A of the Shahid Bakri Bridge complex in Tehran was selected as the case study. Before modeling, the accuracy of the modeling method was validated, and then a precise nonlinear model was built in the OpenSees software using as-built sheets. For the first time in this article, damage in the model was created in different scenarios: reduction of stiffness in concrete cover materials, reduction of cross-sectional area of rebars at various points of the section. The location of the damage was also separately applied at three heights of the pier: 15, 25, and 35 percent of the height. To generate data on the pier, it was considered to load it with an impact load on the top of the pier. This load was applied as an impact on the deck of the pier for a very short time, and the data was collected using accelerometers at the pier height, and the correlation between each pair of consecutive sensors was calculated. Due to the high velocity of the compressive wave in concrete and the overlap that occurs in the return of the wave at both ends of the pier, data collection was performed only for about 0.001 seconds. Finally, due to the weakness of the correlation coefficient in magnifying the location of damage, using the concept of correlation, a damage index based on this concept was presented, and the capability of the presented index in detecting the presence and location of damage in various damage scenarios was evaluated. The results obtained indicate the proper performance of this index in detecting damage in various scenarios and damage intensities between 10 and 30 percent. The presented index only made an error in detecting the location of damage in cases where damage occurred in the concrete cover and rebars in small areas, but even in these cases, the presence of damage was well demonstrated. Due to limitations in sensor placement at the pier height, increasing the distance between sensors and reducing their number was also investigated, and it was observed that even with greater distances between sensors, the presented index has the capability to detect the presence and location of damage, and after finding the approximate location of damage, it is possible to identify the exact location of damage by re-sensoring in probable areas.

کلیدواژه‌ها English

Health Monitoring
Bridge pier
Damage
accelerometer
Correlation Coefficient
Mander, J.B., 1983. Seismic design of bridge piers.
Powell, G.H. and R. Allahabadi, 1988. Seismic damage prediction by deterministic methods: concepts and procedures. Earthquake engineering & structural dynamics, 16(5): p. 719-734.
Vosooghi, A. and M.S. Saiidi, 2012. Experimental fragility curves for seismic response of reinforced concrete bridge columns. ACI Structural Journal, 109(6): p. 825.
Bassam, A., A. Iranmanesh, and F. Ansari, 2011. A simple quantitative approach for post earthquake damage assessment of flexure dominant reinforced concrete bridges. Engineering Structures, 33(12): p. 3218-3225.
Mahboubi, S. and M.R. Shiravand, 2019. Proposed input energy-based damage index for RC bridge piers. Journal of Bridge Engineering, 24(1): p. 04018103.
Hindi, R.A. and R.G. Sexsmith, 2004. Inelastic damage analysis of reinforced concrete bridge columns based on degraded monotonic energy. Journal of Bridge Engineering, 9(4): p. 326-332.
Naderpour, H., A. Ezzodin, A. Kheyroddin, and G. Ghodrati Amiri, 2017. Signal processing based damage detection of concrete bridge piers subjected to consequent excitations. Journal of Vibroengineering, 19(3): p. 2080-2089.
Hertlein, B. and A. Davis, 2007. Nondestructive testing of deep foundations. John Wiley & Sons.
Chai, H.-Y. and K.-K. Phoon, 2013. Detection of shallow anomalies in pile integrity testing. International Journal of Geomechanics, 13(5): p. 672-677.
Feng, Q., Q. Kong, and G. Song, 2016. Damage detection of concrete piles subject to typical damage types based on stress wave measurement using embedded smart aggregates transducers. Measurement, 88: p. 345-352.
Feng, Q., et al., 2016. Damage detection of concrete piles subject to typical damages using piezoceramic based passive sensing approach. Journal of Vibroengineering, 18(2): p. 801-812.
Diwakar, C., N. Patil, and M.R. Sunny, 2018. Structural damage detection using vibration response through cross-correlation analysis: Experimental study. AIAA Journal, 56(6): p. 2455-2465.
Zhou, Y.-L., H. Cao, Q. Liu, and M.A. Wahab, 2017. Output-based structural damage detection by using correlation analysis together with transmissibility. Materials, 10(8): p. 866.
Zhang, Y. and J. Zhu., 2021. Damage identification for bridge structures based on correlation of the bridge dynamic responses under vehicle load. Structures.
Kashani, M.M., L.N. Lowes, A.J. Crewe, and N.A. Alexander, 2016. Nonlinear fibre element modelling of RC bridge piers considering inelastic buckling of reinforcement. Engineering Structures, 116: p. 163-177.
Kunnath, S.K., A. El-Bahy, A.W. Taylor, and W.C. Stone, 1997. Cumulative seismic damage of reinforced concrete bridge piers, Technical Report NCEER, 97-0006. p. 120.
Mazzoni, S., F. McKenna, M.H. Scott, and G.L. Fenves, 2006. OpenSees command language manual. Pacific earthquake engineering research (PEER) center, 264(1): p. 137-158.
Mukhopadhyay, M., 2021. Forced Vibration of Single Degree of Freedom System. Structural Dynamics: Vibrations and Systems, p. 59-128.