بررسی آزمایشگاهی اتلاف انرژی جریان در سرریزهای کنگره‌ای ذوزنقه‌ای سینوسی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی نجف‌آباد، اصفهان، ایران
2 استادیار مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید اشرفی اصفهانی (ره)، اصفهان، ایران.
3 استادیار مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی اصفهان (خوراسگان)، اصفهان، ایران.
4 استادیار مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی نجف‌آباد، اصفهان، ایران.
چکیده
سرریزهای کنگره‌ای، جزء سرریزهای تاج‌طولانی هستند که راندمان دبی و ظرفیت انتقال آن‌ها بیشتر از سرریزهای خطی مشابه است. بررسی میزان اتلاف انرژی در این سرریزهای با راندمان بالا، بسیار مورد اهمیت برای مهندسان در سال‌های اخیر شده است. در این تحقیق، از چهار سرریز کنگره‌ای سینوسی شکل برای بررسی میزان اتلاف انرژی استفاده شد. سرریز اول دارای طول تاج 1/3 متر، سرریز دوم دارای طول تاج 1/5 متر، سرریز سوم دارای طول تاج 1/55 متر و سرریز چهارم دارای طول تاج 1/6 متر است. همچنین سرریز اول و دوم دارای ارتفاع 0/15 متر و نسبت عرض دهانه ورودی به خروجی 6/86 و سرریز سوم و چهارم دارای ارتفاع 0/18 متر و نسبت عرض دهانه ورودی به خروجی 7/67 است. نتایج چنین بود که با افزایش دبی جریان و یا افزایش عمق جریان در بالادست سرریز، اتلاف انرژی کاهش یافت. همچنین با افزایش طول موثر سرریزها، مقدار اتلاف انرژی افزایش می‌یابد. با افزایش نسبت عرض دهانه‌های ورودی به عرض دهانه‌های خروجی سرریز، میزان اتلاف انرژی افزایش یافت. میزان اتلاف انرژی در سرریز چهارم و سرریز سوم به‌ترتیب، بیشترین مقدار است. به طور میانگین و با افزایش 20 درصدی ارتفاع سرریز، میزان اتلاف انرژی 23/2 درصد افزیش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental investigation of flow energy dissipation in sinusoidal trapezoidal labyrinth weirs

نویسندگان English

soheil nematolahi 1
Elham Izadinia 2
Ali Khoshfetrat 3
Ehsan Delavari 4
1 Department of Civil Engineering, Islamic Azad University, Najafabad Branch, Isfahan, Iran
2 Assistant Professor, Department of Civil Engineering, Shahid Ashrafi Esfahani University, Isfahan, Iran
3 Assistant Professor, Water Studies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
4 Assistant Professor, Faculty of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده English

Labyrinth weirs are of the non-linear weirs whose discharge coefficient is higher than similar linear weirs. These weirs have a simple structure. They are mainly made in rectangular, trapezoidal, triangular and semicircular shapes. Investigating the amount of energy loss in these high-efficiency weirs has become very important for engineers in recent years. The experiments were carried out in a flume with a length of 10 meters, a width of 0.6 meters and a height of 0.8 meters. The flow is fed by a pump with an error of 0.01% by three surface tanks and after passing through the flow relaxers into the flume. In this research, four sinusoidal labyrinth weirs were used to check the amount of energy loss. The first spillway has a crown length of 1.3 meters, the second spillway has a crown length of 1.5 meters, the third spillway has a crown length of 1.55 meters, and the fourth spillway has a crown length of 1.6 meters. Also, the first and second weirs have a height of 0.15 meters and the width ratio of the inlet to the outlet is 6.86, and the third and fourth weirs have a height of 0.18 meters and the width ratio of the inlet to the outlet is 7.67. The flow depth in the upstream and downstream of the weir was taken by a point gauge with an error of 1 mm. Weirs are installed at a distance of 5.5 meters from the beginning of the channel. The downstream depth of the spillway was not artificially adjusted by the end valve of the laboratory flume. The weirs are made of wood and wood glue was used for their impermeability. The flow is transferred downstream over the sinusoidal edges of the weir like a curved slide or similar to peak weirs. Also, due to the sinusoidal nature of the weirs, the flow will be transferred downstream faster next to the walls. At the edge of the keys, a local vacuum is created. As the flow rate increases, the available air volume increases. At the downstream of the inlet and outlet keys, a vortex and rotation of the flow is formed, which increases in strength as the flow speed increases. The reason for the formation of vortices is the interference of the falling flow from each sinus. Due to the sinusoidal nature of the flow and the indentations and protrusions in the weir, the flow enters the downstream with a curve and the outflow from each sinus is mixed with the outflow from the other sinus. Also, at the beginning of the outlet keys, a small submerged area is formed, which increases in length and moves downstream as the flow rate increases. In front of the inlet keys, two relatively strong hydraulic jumps are formed, and after that the flow is transferred downstream more calmly. The results were that by increasing the flow rate or increasing the depth of the flow upstream of the weir, the energy loss decreased. Also, the amount of energy loss increases with the effective length of weirs. By increasing the ratio of the width of the input keys to the width of the weir output keys, the amount of energy loss increases. Also, by increasing the ratio of flow depth plus height, such as kinetic energy upstream of the weir to the height of the weir, the amount of energy loss decreases. The amount of energy loss is the highest in the fourth weir and the third weir, respectively. On average, with a 20% increase in the height of the weir, the amount of energy loss increases by 23.2%. Also, the average energy loss in type A, B, C, and D weirs is 42.3, 47.2, 57.9, and 58.6, respectively.

کلیدواژه‌ها English

Energy Loss
Labyrinth weir
Sinusoidal
Discharge coefficient
Inlet and outlet openings
1. Kurdestani, F., Azhdari Moghadam, M., Qohani Arab, H. and Rashki, M. (2019) "Labyrinth weir optimization using pso algorithm" 19th Iranian Hydraulics Conference, Ferdowsi University of Mashhad, 28 and 27 of Bahman (In Persian.
2. Kumar, S., Ahmad, Z. and Mansoor, T., (2011), "A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs", Flow Measurement and Instrumentation 22, no. 3: 175-180.
3. Rezaei, M. (2012) "Discharg-height relationship in rectangular labyrinth weirs" master's thesis on hydraulic structures, Faculty of Agricultural Sciences and Natural Resources, University of Sari (In Persian).
4. Crookston, B. M., and Tullis. B. P., (2012), "Labyrinth weirs: Nappe interference and local submergence." Journal of Irrigation and Drainage Engineering 138, no. 8: 757-765.
5.Esmaeili Varak, M. and Safarrazavi Zadeh, M., (2013). Study of Hydraulic Features of Flow Over Labyrinth Weir with Semi-circular Plan form. Water and Soil, 27(1), pp.224-234.
6. Christensen, N. (2013), "Flow Characteristics of Arced Labyrinth Weirs", Utah State University, Logan, Utah.
7. Seo, I. W., Do Kim, Y., Park, Y. S. and Song, C. G., (2016), "Spillway discharges by modification of weir shapes and overflow surroundings". Environmental Earth Sciences, 75(6): 1-13.
8. Meshkvati Troyjani, S. J., (2013) "Exprimental and numerical hydraulic investigation of toothed trapezoidal labyrinth weir with valve", Ph.D. thesis, water engineering field, water structures, Sari University of Agricultural Sciences and Natural Resources (In Persian).
9. Sangsefidi Y, Ghodsian M. Investigation of Effects of Entrance Channel Walls on the ‎Hydraulic Performance of ‎Arced Labyrinth Weirs. MCEJ (2019); 19 (1) :195-206.
10. Azarpeyvand H, Emadi A R, Sedghi Asl M. An Experimental Study of the Discharge of the Length Increase Effect on the Composite Trapezoidal Labyrinth Spillway. jwss (2019); 23 (1) :405-418.
11. Safarrazavi Zadeha, M., Esmaeili Varaki, M. and Biabani, R. (2021) "Experimental study on flow over sinusoidal and semicircular labyrinth weirs", ISH Journal of Hydraulic Engineering, Vol. 27, NO. S1, 304–313.
12. Merkel, J., Belzner, F., Gebhardt, M. and Thorenz, C., (2018). Energy dissipation downstream of labyrinth weirs.
13. Ghaderi, A. and Abbasi, S., (2019). Numerical investigation of labyrinth stepped spillways’ performance on energy dissipation of skimming flow. Journal of Hydraulics, 14(3), pp.1-16.
14. Haghiabi, A.H., Nou, M.R.G. and Parsaie, A., (2022). The energy dissipation of flow over the labyrinth weirs. Alexandria Engineering Journal, 61(5), pp.3729-3733.
15. Novák, P. and Čabelka, J., (1981). Models in hydraulic engineering: Physical principles and design applications. Monographs & surveys in water resources engineering.
16. Sumer, B.M. and Fredsoe, J., (1991), August. Onset of scour below a pipeline exposed to waves. In The First International Offshore and Polar Engineering Conference. OnePetro.
17. Fathi A, Abdi Chooplou Ch, Ghodsian M (2023) “An experimental study of flow energy loss in trapezoidal stepped piano key weirs (PKWs).” Modares Civil Engineering journal., 23(4).
18. Rdhaiwi, A.Q., Khoshfetrat, A. and Fathi, A., 2024. EXPERIMENTAL COMPARISON OF FLOW ENERGY LOSS IN TYPE-B AND-C TRAPEZOIDAL PIANO KEY WEIRS (PKWS). Journal of Engineering and Sustainable Development, 28(1), pp.55-63.