بررسی ریزساختاری تأثیر فلز سنگین سرب بر زمان گیرش سیمان

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران
چکیده
آلاینده­های حاوی فلز سنگین سرب همواره از منابع اصلی آلودگی محیط‌زیست در طی دهه­های گذشته است. فعالیت­های انسانی و صنعتی به‌طور مستقیم یا غیرمستقیم باعث ورود مقادیر انبوهی از آلاینده­های مبتنی بر سرب به سطح خاک و آب زیرزمینی شده است. تکنیک تثبیت و جامد­سازی (S/S) توسط سیمان، با کاهش قابل‌توجه تحرک و حلالیت سرب در خاک، ابزار مؤثری برای تصفیه خاک­های آلوده به سرب است. از سوی دیگر آلاینده فلز سنگین سرب بر روی زمان گیرش سیمان تأثیرگذار است و زمان گیرش به طور مستقیم بر کارایی ترکیبات سیمان تأثیرگذار است. بر این اساس فهم اندرکنش سرب و سیمان حائز اهمیت است. در این راستا هدف پژوهش حاضر بررسی تأثیر فلز سنگین سرب بر زمان گیرش و اندرکنش ریزساختاری سرب و سیمان است. بدین منظور محلول نیترات سرب با غلظت­های kg/cmol-solid 500 و 250، 100، 50، 25، 10، 0 به سیمان افزوده شد. بررسی اثر فلز سنگین سرب بر فرایند هیدراتاسیون و زمان گیرش خمیر سیمان توسط آزمایش­های زمان گیرش، پراش پرتو ایکس (XRD) و تصاویر میکروسکوپ الکترونی روبشی (SEM) و میزان تراوش و آبشویی آلودگی (TCLP) مورد تجزیه‌وتحلیل آزمایشگاهی قرار گرفته است. بر اساس نتایج حاصل از پژوهش،‌ رسوب و کمپلکس شیمیایی فلز سنگین سرب به شکل Pb(OH)2 و Pb-C-S-H منجر به تعویق هیدراتاسیون سیمان و افزایش زمان گیرش اولیه و نهایی خمیر سیمان و تثبیت و جامد­سازی آلاینده فلز سنگین سرب شده است. با افزودن kg/cmol-solid 25 نیترات سرب زمان گیرش اولیه سیمان از 65 دقیقه به 155 دقیقه افزایش یافته است. نتایج ریز­ساختاری نشان داد سیمان در فرایند تثبیت و جامد­سازی (S/S) فلز سنگین سرب تا غلظت cmol/kg-solid 100 به خوبی عمل کرده و میزان آلاینده برای خاک در حد مجاز است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of the Microstructural Impact of Heavy Metal Lead on Cement Setting Time

نویسندگان English

Sedigheh Ghasemi
PEYMAN HOMAMI
Jafar Keyvani
Department of Civil Engineering, Faculty of Engineering, Kharazmi University, Tehran. Iran.
چکیده English

Heavy metal pollutants containing lead have consistently been major sources of environmental contamination over the past decades. Human and industrial activities have directly or indirectly led to the introduction of substantial amounts of lead-based pollutants into soil and groundwater. The Solidification/Stabilization (S/S) technique using cement, by significantly reducing the mobility and solubility of lead in soil, serves as an effective tool for remediating lead-contaminated soils. Conversely, the heavy metal pollutant lead significantly affects the setting time of cement, and the setting time directly impacts the efficiency of cementitious compounds. Consequently, understanding the interaction between lead and cement is of paramount importance. In this regard, the present study aims to investigate the influence of the heavy metal lead on the setting time and microstructural interaction of lead and cement. To achieve this, lead nitrate solution with concentrations of 0, 10,25,50, 100, 250 and 500 kg/cmol-solid, was added to cement. The effect of lead on the hydration process and setting time of cement was examined through setting time tests, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) images, and leachability analysis (TCLP). According to the research results, the precipitation and chemical complexation of the heavy metal lead in the form of Pb(OH)2 and Pb-C-S-H delayed the cement hydration process, extended the initial and final setting times of cement paste, and immobilized and solidified lead pollution effectively. By adding 25 kg/cmol-solid lead nitrate, the initial setting time of cement increased from 65 minutes to 155 minutes. Microstructural results demonstrated that cement effectively interacted with heavy metal lead up to a concentration of 100 cmol/kg-solid during the Solidification/Stabilization (S/S) process, keeping pollutant levels within permissible limits for soil.

کلیدواژه‌ها English

Heavy Metal Lead
setting time
Solidification/Stabilization
Cement
[1] S. Zhou, Y. Ogawa, K. Kawai, 2023, Influence of chloride solutions on the leaching of heavy metals from cement hydrates, Construction and Building Materials, 378, 131108.
[2] M. Amiri, M. Dehghani, T. Javadzadeh, S. Taheri, 2022, Effects of lead contaminants on engineering properties of Iranian marl soil from the microstructural perspective, Minerals Engineering, 176, 107310.
[3] M. Asrari, J. Narimani, 2020, Removing Cr from industrial waste water by using modified green concrete by bentonite, concrete Research Quartery Journal of Guilan University of Iran, 13(2), 135-143. (In Persian).
[4] C.-q. Wang, S. Chen, F.-h. Yang, A.-m. Wang, 2023, Study on properties of representative ordinary Portland cement: Heavy metal risk assessment, leaching release kinetics and hydration coupling mechanism, Construction and Building Materials, 385, 131507.
[5] A. Jafari, S. Asadyari, Z. Moutab Sahihazar, M. Hajaghazadeh, 2023, Monte Carlo-based probabilistic risk assessment for cement workers exposed to heavy metals in cement dust, Environmental Geochemistry and Health, 1-19.
[6] V. R, Ouhadi, O. Bahadori Nezhad, M. Amiri, 2014, Lead Retention of Carbonated Kaolinite in the Adsorption and Electrokinetics Processes, Modares Journal of Civil Engineering, 14(3). (In Persian).
[7] G. Qiao, D. Hou, W. Li, B. Yin, Y. Zhang, P. Wang, 2023, Molecular insights into migration of heavy metal ion in calcium silicate hydrate (CSH) surface and intra-CSH (Ca/Si= 1.3), Construction and Building Materials, 365, 130097.
[8] L. Wang, Y. Zhang, L. Chen, B. Guo, Y. Tan, K. Sasaki, D.C. Tsang, 2022, Designing novel magnesium oxysulfate cement for stabilization/solidification of municipal solid waste incineration fly ash, Journal of Hazardous Materials, 423, 127025.
[9] Z. Ren, L. Wang, H. Wang, S. Liu, J. Ren, 2023, Stabilization and solidification mechanism of Pb in phosphogypsum slag-based cementitious materials, Construction and Building Materials, 368, 130427.
[10] N.-W. Wiesława, T. Barbara, D. Sylwia, 2015, The properties of cement pastes and mortars processed with some heavy metal nitrates containing solutions, Procedia Engineering, 108, 72-79.
[11] V.R. Ouhadi, 2018, Evaluation of Micro and Nano-Structure of Process of Cement Hydration in Solidification and Stabilization of Zn Heavy Metal Pollutants at the Presence of Soft Clay, Modares Civil Engineering journal, 18(1), 1-16. (In Persian).
[12] M. Amiri, K. Arzanian karamallah, M. Aryanpoor, 2020, Efficacy of Elevated Temperatures on Mechanical Properties of Concrete Containing Aluminum Slag from the Microstructural Perspective, Concrete Research Quartery Journal University of Guilan, 13(3), 19-32. (In Persian).
[13] M. Amiri, M. Sanjari, F. Porhonar, Microstructural 2022, Evaluation of the Cement Stabilization of Hematite-Rich Red Soil, Case Studies in Construction Materials, e00935.
[14] N. Gineys, G. Aouad, D. Damidot, 2010, Managing trace elements in Portland cement–Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts, Cement and concrete composites, 32(8), 563-570.
[15] L. Xu, P. Wang, G. Zhang, 2012, Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures, Construction and Building Materials, 31, 347-352.
[16] S. Maiti, J. Malik, B. Prasad, A.K. Minocha, 2023, Solidification/stabilisation of Pb (II) and Cu (II) containing wastewater in cement matrix, Environmental Technology, 44(19), 2876-2888.
[17] L. Lu, C. Xiang, Y. He, F. Wang, S. Hu, Early hydration of C3S in the presence of Cd2+, Pb2+ and Cr3+ and the immobilization of heavy metals in pastes, 2023, Construction and Building Materials, 152, 923-932.
[18] D.X. Wang, N.E. Abriak, R. Zentar, W. Xu, 2012, Solidification/stabilization of dredged marine sediments for road construction, Environmental technology, 33(1), 95-10.
[19] I.F. Olmo, E. Chacon, A. Irabien, 2001, Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement, Cement and concrete research, 31(8), 1213-1219.
[20] C. Weeks, R.J. Hand, J.H. Sharp, 2008, Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate, Cement and concrete composites, 30(10), 970-978.
[21] Q. Chen, C. Hills, M. Tyrer, I. Slipper, H. Shen, A. Brough, 2007, Characterisation of products of tricalcium silicate hydration in the presence of heavy metals, Journal of Hazardous Materials, 147(3), 817-825.
[22] E.E. Hekal, W.S. Hegazi, E.A. Kishar, M.R. Mohamed, 2011, Solidification/stabilization of Ni (II) by various cement pastes, Construction and Building Materials, 25(1), 109-114.
[23] L. Chen, Y.-S. Wang, L. Wang, Y. Zhang, J. Li, L. Tong, Q. Hu, J.-G. Dai, D.C. Tsang, 2021, Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement, Journal of Hazardous Materials, 408, 124404.
[24] J. Wang, F. Chen, R. Yu, D. Fan, T. Zhang, 2023, Effect of heavy metal (Mn, Pb and Cr) on the properties and hydration in low water/binder cement-based composites (LW/B-CC), Construction and Building Materials, 386, 131567.
[25] ASTM, 2014, Annual Book of ASTM Standards, American Society for Testing & Materials America.
[26] D. Moore, R. Reynolds Jr, 1997, X‐Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edn Oxford University Press, New York, NY .
[27] V. R, Ouhadi, R. Yong, 2003, Experimental and theoretical evaluation of impact of clay microstructure on the quantitative mineral evaluation by XRD analysis, Elsevier Appl Clay Sci. J, 23(1-4) 141-148.
[28] C. ASTM, 2008, Standard test methods for time of setting of hydraulic cement by Vicat needle, West Conshohocken, PA: ASTM International, C191-08 .
[29] R.A. Shawabkeh, 2005, Solidification and stabilization of cadmium ions in sand–cement–clay mixture, Journal of hazardous material, 125(1), 237-243.
[30] P.D.M. EPA, 1983, Land Application of Municipal Sludge, Municipal Environmental Research Laboratory, EPA-625/1-83-016, New Yor.
[31] V.R. Ouhadi, M. Amiri, 2020, Microstructural Evaluation of Stabilization and Solidification of Heavy Metals by Cement at the Presence of Nano Montmorillonite, Amirkabir Journal of Civil Engineering, 52(1) 107-122. (In Persian).
[32] L.P. Esteves, 2011, On the hydration of water-entrained cement–silica systems: Combined SEM, XRD and thermal analysis in cement pastes, Thermochimica Acta, 518(1-2), 27-35.
[33] L. Xu, K. Yang, C. Tang, X. Yang, K. Wu, B. Lothenbach, 2023, Lead retardation on cement hydration: Inhibition and re-acceleration of clinker dissolution, Cement and Concrete Composites, 138, 104986.
[34] S. Ouki, C. Hills, 2002, Microstructure of Portland cement pastes containing metal nitrate salts, Waste Management, 22(2), 147-151.
[35] M.K. Aliyu, A. Karim, 2016, The effect of cement and rice husk ash on the compressive strength and leachability of artificially contaminated stabilized sediment, ARPN J. Eng. Appl. Sci 11, 5365-5371.
[36] G.D. Gatta, U. Hålenius, F. Bosi, L. Cañadillas-Delgado, M.T. Fernandez-Diaz, 2019, Minerals in cement chemistry: A single-crystal neutron diffraction study of ettringite, American Mineralogist, 104(1), 73-78.
[37] G. Thevenin, J. Pera, 1999, Interactions between lead and different binders, Cement and Concrete Research, 29(10), 1605-1610.
[38] V.R. Ouhadi, M. Deyranloo, 2019, The effect of lead heavy metal on initial hydration and setting time of cement-fly ash compounds, 11th National Congress of Civil Engineering. (In Persian).
[39] L. Chen, K. Nakamura, T. Hama, 2023, Review on stabilization/solidification methods and mechanism of heavy metals based on OPC-based binders, Journal of environmental management, 332, 117362.
[40] M.R. Mohammed, D.A. Ahmed, 2011, Influence of some heavy metal nitrates on the hydration of C3A, Advances in cement research, 23(5), 215-220.
[41] R. Devamani, M. Alagar, 2012, Synthesis and characterization of Lead (II) hydroxide nanoparticles, Int J Appl Sci Eng Res, 1, 483-487.
[42] F. Deschner, F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, F. Goetz-Neunhoeffer, J. Neubauer, 2012, Hydration of Portland cement with high replacement by siliceous fly ash, Cement and Concrete Research, 42(10), 1389-1400.
[43] A. Saedi, A. Jamshidi-Zanjani, M. Mohseni, A.K. Darban, H. Nejati, 2023, Mechanical activation of lead–zinc mine tailings as a substitution for cement in concrete construction, Construction and Building Materials, 364, 129973.