امکان سنجی طرح اختلاط بومی با استفاده از منابع بالقوه کشور به منظور دوام و توسعه پایدار (مطالعه موردی – اپرون فرودگاه مشهد)

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
چکیده
طرح اختلاط بومی بتن رویکرد نوینی است که به ‌عنوان راهکار اقتصادی به‌منظور توسعه پایدار بسیاری از زیربناهای عمرانی در جهان مورد توجه قرار گرفته است. برای این منظور در این مقاله، یک روش کاربردی و اجرایی جهت افزایش کارایی و عمر روسازی‌های بتنی فرودگاه مشهد با استفاده از منابع معدنی بالقوه و نیز به حداقل رساندن هزینه‌های نگهداری معرفی شده است. در این مطالعه، 8 طرح اختلاط بتن با سنگدانه های دو معدن محلی مهریزی و رضایی نسبت به فرودگاه مشهد تهیه و سپس خواص مکانیکی و رفتار دوامی کلیه مخلوط ها جهت ارائه طرح اختلاط بهینه بومی انجام شد. نتایج نشان داد که با افزدون الیاف پلی پروپیلن به نمونه های حاوی میکروسیلیس، مقاومت خمشی نمونه های بتنی تا میزان 8.7 مگاپاسکال افزایش یافت. بر اساس نتایج، نمونه های بتنی حاوی سنگدانه های مهریزی در مقایسه با بتن های ساخته شده از سنگدانه‌های معدن رضایی عملکرد بهتری از لحاظ رفتار مکانیکی و دوامی نشان دادند. همچنین در بین مخلوط های معدن مهریزی، طرح اختلاط حاوی الیاف پلی پروپیلن و 7 درصد جایگزینی میکروسیلیس ازنا با سیمان به مراتب مقاومت و دوام بالاتری نسبت به دیگر نمونه ها را از خود نشان دادند. به نحوی که میزان بهبود مقاومت فشاری، مقاومت در برابر تهاجم یون کلر، پدیده ذوب و یخ و واکنش های قلیایی سیلیسی در مقایسه با نمونه شاهد پس از پایان دوره هریک آزمایش‌های مذکور به ترتیب برابر با 81/22%، 418%، 400% و 31/189% گردیده است. لذا بر اساس نتایج مذکور طرح اختلاط بومی با استفاده از مصالح معدن مهریزی جهت استفاده در اپرون فرودگاه مشهد پیشنهاد می‌گردد

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Feasibility of local mixing plan using the country's potential resources for durability and sustainable development (case study - Mashhad airport apron)

چکیده English

Today, most of the existing pavements in the country are asphalt pavements. This is due to the abundance of oil in the country and the lack of a suitable alternative for it. Asphalt pavements, despite their popularity and ease of implementation, also have disadvantages. The low service life of asphalt pavements and the exorbitant costs that are paid for their maintenance, as well as the damages caused in some special areas of the pavement, such as airport runways, require the use of pavements that can have many characteristics. It is better than asphalt paving to meet the needs of these areas. In recent years, the use of concrete pavement compared to asphalt pavement has had a higher economic justification. Also, in some cases, the use of concrete pavement, such as airport runways, which must have high resistance to pressure, impact, and wear, is the only viable option. But concrete pavement also has disadvantages such as low durability against freezing and thawing cycles in cold regions. Therefore, it is necessary to take into account the necessary measures to increase the durability of concrete, compensate for the disadvantages of concrete pavements against destructive factors and increase their service life to a significant amount, so that it is economically justified compared to asphalt procedures. The indigenous concrete mixing plan is a new approach that has been considered as an economic solution for the sustainable development of many civil infrastructures in the world. For this purpose, in this article, a practical and effective method to increase the efficiency and life of concrete pavements of Mashhad Airport by using potential mineral resources and also to minimize maintenance costs has been introduced. In this study, 8 concrete mixing plans were prepared with aggregates from two local quarries, Mehrizi and Rezaei, in relation to Mashhad airport, and then the mechanical properties and durability behavior of all mixtures were carried out to provide the optimal local mixing plan. The results showed that by adding polypropylene fibers to the samples containing microsilica, the bending strength of the concrete samples increased up to 8.7 MPa. Based on the results, concrete samples containing Mehrizi aggregates showed better performance in terms of mechanical behavior and durability compared to concretes made from Rezai mine aggregates. Also, among the mixtures of Mehrizi mine, the mixing design containing polypropylene fibers and 7% replacement of microsilica with cement showed far higher resistance and durability than other samples. In such a way that the rate of improvement in compressive strength, resistance to chlorine ion invasion, melting and ice phenomenon and silica alkali reactions compared to the control sample after the end of each of the aforementioned tests is 22.81%, 418%, 400% respectively. % and 189.31%. Therefore, based on the mentioned results, a local mixing plan using Mahden Mehrizi materials is suggested for use in the apron of Mashhad airport.


کلیدواژه‌ها English

PP fibers
Concrete pavement
durability
optimal mix design
microsilica
[1] P. and B. Islamic Republic of Iran, Organization, Design, Construction and Maintenance Manual for Highways Concrete Pavements. 2017, p. 490.
[2] R. Siddique, “Utilization of silica fume in concrete: Review of hardened properties,” Resour. Conserv. Recycl., vol. 55, no. 11, pp. 923–932, 2011.
[3] W. Sun, H. Chen, X. Luo, and H. Qian, “The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete,” Cem. Concr. Res., vol. 31, no. 4, pp. 595–601, 2001.
[4] ASTM C39, “Standard test method for compressive strength of cylindrical concrete specimens,” ASTM International. 2016, doi: 10.1520/C0039_C0039M-20.
[5] ASTM C78 / C78M-15a, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading).” ASTM International, Philadelphia, 2015, doi: 10.1520/C0078_C0078M-15A.
[6] ASTM C1585-13, “Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes,” ASTM Int., vol. 41, no. 147, pp. 1–6, 2013.
[7] ASTM C642-13, “Standard test method for density, absorption, and voids in hardened concrete,” ASTM International, no. 3. ASTM International, Philadelphia, pp. 1–3, 2013, doi: 10.1520/C0642-13.
[8] ASTM C157-75, “Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and,” Annual Book of ASTM Standards, vol. 04. pp. 1–7, 2017.
[9] K. Samimi and A. A. Shirzadi Javid, “Magnesium Sulfate (MgSO4) Attack and Chloride Isothermal Effects on the Self-consolidating Concrete Containing Metakaolin and Zeolite,” Iran. J. Sci. Technol. - Trans. Civ. Eng., pp. 1–16, 2020, doi: 10.1007/s40996-020-00398-6.
[10] M. T. Jepsen, D. Mathiesen, C. Munch-Petersen, and D. Bager, “Durability of resource saving ‘green’ types of concrete,” Proceedings - fib-Symposium on Concrete and Environment 2001. October, pp. 41–42, 2001.
[11] ASTM C1202, “Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration,” in ASTM, 2012, vol. 100, pp. 1–8.
[12] ASTM C672 / C672M-03, “Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals (Withdrawn 2012).” ASTM International, Philadelphia, 2003, doi: 10.1520/C0672_C0672M-03.
[13] ASTM C1260-21, “Standard Test Method for Potential Alkali Reactivity of Aggregates ( Mortar-Bar Method),” ASTM International. pp. 1–5, 2021, doi: 10.1520/C1260-21.
[14] ASTM C126, “Standard test method for sieve analysis of fine and coarse aggregates,” ASTM, 2006.