بهسازی لرزه‌ای اتصالات خارجی تیر - ستون بتنی با آسیب شدید با استفاده از مصالح HPFRCC و FRCM

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 کارشناس ارشد سازه، گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران
2 استادیار، گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران
چکیده
بررسی زلزله‌های گذشته حاکی از آن است که به علت عدم رعایت جزئیات لرزه‌ای ویژه اتصالات تیر-ستون، مکانیسم‌های ترد سازه ناشی از رفتار اتصال، اغلب منجر به آسیب‌دیدگی شدید یا حتی فروریزش ساختمان می‌گردد. گسیختگی اتصال تیر-ستون به دلیل گسیختگی برشی هسته اتصال یا لغزش آرماتور در این مکانیسم‌ها شایع است. احیا و بهسازی لرزه‌ای اتصالات خارجی تیرستون بتن مسلح آسیب‌دیده یکی از چالش‌های اخیر محققین است؛ لذا در این تحقیق به ارائه راهکاری جهت ارتقای لرزه‌ای رفتار اتصالات آسیب‌دیده تحت زلزله پرداخته شده است. در این راستا 3 اتصال خارجی تیرستون با مقیاس ½ تحت بارگذاری جانبی چرخه‌ای با دامنه افزایشی قرار گرفتند. نمونه‌های آزمایش شده شامل دو نمونه کنترلی بدون آسیب اولیه است که یک نمونه دارای جزئیات لرزه‌ای ویژه و نمونه کنترلی دیگر فاقد جزئیات لرزه‌ای ویژه است. نمونه بهسازی شده، مانند نمونه‌های کنترلی فاقد جزئیات لرزه‌ای است که ابتدا تحت آسیب شدید قرار گرفته است و سپس اقدام به احیا و بهسازی اتصال با مصالح HPFRCC و FRCM شده است.

نتایج آزمایش نشان می‌دهد که جایگزینی بتن آسیب‌دیده با مصالح HPFRCC سبب جابه‌جایی مفصل پلاستیک به بیرون هسته اتصال و شکل‌گیری مفصل پلاستیک خمشی در تیر و عدم آسیب هسته اتصال و بهبود پیوستگی بین بتن و آرماتور طولی شده است، همچنین میانگین بار حداکثر، ضریب شکل‌پذیری و انرژی مستهلک شده برای نمونه احیاء و بهسازی شده به طور میانگین به ترتیب %16، %17 و %56 نسبت به نمونه کنترلی دارای جزئیات لرزه‌ای ویژه بدون آسیب اولیه افزایش‌یافته است. به‌طوری‌که استفاده از این مصالح راهکار مناسبی جهت افزایش ظرفیت باربری، شکل‌پذیری، استهلاک انرژی و سختی اعضا باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Rehabilitation of damaged RC exterior beam-column joints with the HPFRCC and FRCM materials

نویسندگان English

Pouya Elahi 1
mohammad hossein saghafi 2
1 Master, Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
2 Assistant Professor, Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
چکیده English

The reconstruction and modernization of impaired external beam-column connections in reinforced concrete constructions is presently a significant predicament for scholars and experts in the field. This predicament necessitates comprehensive research in order to formulate viable solutions and methodologies for the seismic restoration and retrofitting of these connections. Consequently, the main focus of this research lies in proposing a solution to improve the seismic performance of impaired connections under earthquake-induced loading. Within this specific context, it is of utmost importance to consider a comprehensive analysis of a total of three beam-column connections that were strategically positioned externally and scaled down to half their original size. These connections were then subjected to a series of cyclic lateral loading, which can be characterized by its repetitive nature and a distinct feature of an increasing amplitude. The objective of this experimental study was to evaluate the response and behavior of these connections under such loading conditions. Additionally, in order to establish a reliable basis for comparison, two control specimens were included in the testing program. These control specimens, which were meticulously preserved and remained undamaged, served as benchmarks against which the subjected specimens were compared and evaluated. One of these control samples possessed seismic details that were of a unique and distinctive nature, while the other control specimen lacked the presence of such special seismic details. It is of utmost importance to note that the purpose of conducting these tests was to evaluate and assess the efficacy and effectiveness of the seismic details in their ability to withstand and resist lateral loading under cyclic conditions. Furthermore, in addition to the aforementioned control specimens, one supplementary specimen was also included in the testing process. This additional specimen experienced a preliminary stage during which it was exposed to significant harm, following which it was subsequently exposed to the restoration of connections. This process of restoration involved the application and execution of materials known as High-Performance Fiber Reinforced Cementitious Composite (HPFRCC) and alongside the retrofitting of the specimens with Fiber Reinforced Cementitious Matrix (FRCM) and. The results and findings that were derived from the examination and analysis of the data obtained from these tests demonstrate and illustrate that the replacement and substitution of deteriorated concrete with HPFRCC substances leads to the transfer of the plastic hinge from the core of the connection, thereby establishing a flexural plastic hinge within the beam. The utilization of this methodology does not yield any unfavorable outcomes on the underlying connections, all the while enhancing the bond between the concrete and longitudinal reinforcement. As a result, the incorporation of these particular materials introduces a practical and feasible approach for amplifying the capacity of load-bearing, flexibility, energy dissipation, and stiffness of the individual components. Additionally, the average maximum load, ductility factor and energy dissipation for the rehabilitated specimen increased by an average of 16%, 17% and 56%, respectively, compared to the undamaged control specimen with special seismic detailing. This particular method exhibits a significant potential for enhancing the overall structural soundness and stability of constructions.

کلیدواژه‌ها English

Restored joints
Cyclic Behavior
Beam-column connection
Damaged connections
Plastic hinge relocation
[1] Tapan, M., et al., Failures of structures during the October 23, 2011 Tabanlı (Van) and November 9, 2011 Edremit (Van) earthquakes in Turkey. Engineering Failure Analysis, 2013. 34: p. 606-628.
[2] Ates, S., et al., Damages on reinforced concrete buildings due to consecutive earthquakes in Van. Soil Dynamics and Earthquake Engineering, 2013. 53: p. 109-118.
[3] Augenti, N. and F. Parisi, Learning from construction failures due to the 2009 L’Aquila, Italy, earthquake. Journal of Performance of Constructed Facilities, 2010. 24(6): p. 536-555.
[4]318 A.C. Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19). 2020. American Concrete Institute.
[5] Institute, A.C. Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), an ACI Report. 2012. American Concrete Institute.
[6] Bedirhanoglu, I., et al. Retrofit of concrete panels with prefabricated HPFRCC plates. in 14th World Conference on Earthquake Engineering. 2008.
[7] hossein Saghafi, M. and H. Shariatmadar, Enhancement of seismic performance of beam-column joint connections using high performance fiber reinforced cementitious composites. Construction and Building Materials, 2018. 180: p. 665-680.
[8] Nouri, A., M.H. Saghafi, and A. Golafshar, Evaluation of beam-column joints made of HPFRCC composites to reduce transverse reinforcements. Engineering Structures, 2019. 201: p. 109826.
[9] Saghafi, M.H., et al. The effect of high-performance fiber-reinforced cementitious composites on the lateral behavior of reinforced concrete frames without seismic details. in Structures. 2020. Elsevier.
[10] Saghafi, M.H., et al. Application of HPFRCC in beam–column joints to reduce transverse reinforcements. in Structures. 2021. Elsevier.
[11] Saghafi, M.H., H. Shariatmadar, and A. Kheyroddin, Seismic behavior of high-performance fiber-reinforced cement composites beam-column connection with high damage tolerance. International Journal of Concrete Structures and Materials, 2019. 13(1): p. 1-20.
[12] Al-Rousan, R.Z. and A. Sharma. Integration of FRP sheet as internal reinforcement in reinforced concrete beam-column joints exposed to sulfate damaged. in Structures. 2021. Elsevier.
[13] Sharma, R. and P.P. Bansal, Behavior of RC exterior beam column joint retrofitted using UHP-HFRC. Construction and Building Materials, 2019. 195: p. 376-389.
[14] Saghafi, M., H. Shariatmadar, and A. Kheyroddin, Experimental evaluation of mechanical properties of high performance fiber reinforced cementitious composites. Concrete Research, 2017. 9(2): p. 29-42.
[15] Davodikia, B., M.H. Saghafi, and A. Golafshar. Experimental investigation of grooving method in seismic retrofit of beam-column external joints without seismic details using CFRP sheets. in Structures. 2021. Elsevier.
[16] Behzad, S., M.H. Saghafi, and A. Golafshar, Optimum percentage of steel fibres of HPFRCC for reduction of transverse reinforcement in beam-column joints. MAGAZINE OF CONCRETE RESEARCH, 2022.
[17] Del Vecchio, C., et al., Seismic retrofit of real beam-column joints using fiber-reinforced cement composites. J. Struct. Eng, 2018. 144(5): p. 04018026.
[18] Khan, M.I., et al., Seismic behavior of beam-column joints strengthened with ultra-high performance fiber reinforced concrete. Composite Structures, 2018. 200: p. 103-119.
[19] Shaaban, I.G. and O.A. Seoud, Experimental behavior of full-scale exterior beam-column space joints retrofitted by ferrocement layers under cyclic loading. Case studies in construction materials, 2018. 8: p. 61-78.
[20] Shafaei, J., et al., Rehabilitation of earthquake damaged external RC beam‐column joints by joint enlargement using prestressed steel angles. Earthquake Engineering & Structural Dynamics, 2017. 46(2): p. 291-316.
[21] Torabi, A. and M.R. Maheri, Seismic repair and retrofit of RC beam–column joints using stiffened steel plates. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2017. 41(1): p. 13-26.
[22] Devi, A.K.K., et al., Novel non-invasive seismic upgradation strategies for gravity load designed exterior beam-column joints. Archives of Civil and Mechanical Engineering, 2018. 18(2): p. 479-489.
[23] Adibi, M., et al., Seismic retrofit of external concrete beam-column joints reinforced by plain bars using steel angles prestressed by cross ties. Engineering Structures, 2017. 148: p. 813-828.
[24] Sasmal, S. and S. Voggu, Strut-relieved single steel haunch bracing system for mitigating seismic damage of gravity load designed structures. Journal of Structural Engineering, 2018. 144(10): p. 04018167.
[25] Zabihi, A., et al., Seismic retrofit of exterior RC beam-column joint using diagonal haunch. Engineering Structures, 2018. 174: p. 753-767.
[26] Dang, C.-T. and N.-H. Dinh, Experimental study on structural performance of RC exterior beam-column joints retrofitted by steel jacketing and haunch element under cyclic loading simulating earthquake excitation. Advances in Civil Engineering, 2017. 2017.
[27] Yang, Y., et al., Experimental and numerical study on seismic performance of deficient interior RC joints retrofitted with prestressed high-strength steel strips. Engineering Structures, 2019. 190: p. 306-318.
[28] Campione, G., L. Cavaleri, and A. Failla, Flexural Behavior of External Beam-Column Reinforced Concrete Assemblages Externally Strengthened with Steel Cages. ACI Structural Journal, 2016. 113(5).
[29] De Risi, M.T. and G.M. Verderame, Experimental assessment and numerical modelling of exterior non-conforming beam-column joints with plain bars. Engineering Structures, 2017. 150: p. 115-134.
[30] Bindhu, K., N. Mohana, and S. Sivakumar, New Reinforcement Detailing for Concrete Jacketing of Nonductile Exterior Beam–Column Joints. Journal of Performance of Constructed Facilities, 2016. 30(1): p. 04014192.
[31] Ruiz-Pinilla, J.G., et al., RC columns strengthened by steel caging: Cyclic loading tests on beam-column joints with non-ductile details. Construction and Building Materials, 2021. 301: p. 124105.
[32] Khodaei, M., M.H. Saghafi, and A. Golafshar, Seismic retrofit of exterior beam-column joints using steel angles connected by PT bars. Engineering Structures, 2021. 236: p. 112111.
[33] Shafaei, J., A. Hosseini, and M.S. Marefat, Seismic retrofit of external RC beam–column joints by joint enlargement using prestressed steel angles. Engineering Structures, 2014. 81: p. 265-288.
[34] Maddah, A., A. Golafshar, and M.H. Saghafi, 3D RC beam–column joints retrofitted by joint enlargement using steel angles and post-tensioned bolts. Engineering Structures, 2020. 220: p. 110975.
[35] Morshedijoo, G., A. Golafshar, and M. hossein Saghafi, Experimental investigation of damaged RC joints retrofitted by stiffened angles and bars. Earthquakes and Structures, 2021. 20(5): p. 557.
[36] Shoukry, M.E., A.M. Tarabia, and M.Z. Abdelrahman, Seismic retrofit of deficient exterior RC beam-column joints using steel plates and angles. Alexandria Engineering Journal, 2022. 61(4): p. 3147-3164.
[37] Shen, X., et al., Relocating plastic hinges in reinforced concrete beam-column joints by mechanically anchored diagonal bars. Engineering Structures, 2022. 251: p. 113468.
[38] Kanchana Devi, A.K., et al., Novel non-invasive seismic upgradation strategies for gravity load designed exterior beam-column joints. Archives of Civil and Mechanical Engineering, 2018. 18: p. 479-489.
[39] Mosallam, A., Strength and ductility of reinforced concrete moment frame connections strengthened with quasi-isotropic laminates. Composites Part B: Engineering, 2000. 31(6-7): p. 481-497.
[40] Ghobarah, A. and A. Said, Shear strengthening of beam-column joints. Engineering Structures, 2002. 24(7): p. 881-888.
[41] D’Ayala, D., A. Penford, and S. Valentini. Use of FRP fabric for strengthening of reinforced concrete beam-column joints. in 10th Int. conference on structural faults and repair. London: July. 2003.
[42] Ghobarah, A. and T. El-Amoury, Seismic rehabilitation of deficient exterior concrete frame joints. Journal of composites for construction, 2005. 9(5): p. 408-416.
[43] Tsonos, A.G., Effectiveness of CFRP jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages. Structural Engineering and Mechanics, 2007. 27(4): p. 393-408.
[44] Karayannis, C.G. and G.M. Sirkelis, Strengthening and rehabilitation of RC beam–column joints using carbon‐FRP jacketing and epoxy resin injection. Earthquake Engineering & Structural Dynamics, 2008. 37(5): p. 769-790.
[45] Le-Trung, K., et al., Experimental study of RC beam–column joints strengthened using CFRP composites. Composites Part B: Engineering, 2010. 41(1): p. 76-85.
[46] Realfonzo, R., A. Napoli, and J.G.R. Pinilla, Cyclic behavior of RC beam-column joints strengthened with FRP systems. Construction and Building Materials, 2014. 54: p. 282-297.
[47] Hadi, M.N. and T.M. Tran, Retrofitting nonseismically detailed exterior beam–column joints using concrete covers together with CFRP jacket. Construction and Building Materials, 2014. 63: p. 161-173.
[48] Hadi, M.N. and T.M. Tran, Seismic rehabilitation of reinforced concrete beam–column joints by bonding with concrete covers and wrapping with FRP composites. Materials and Structures, 2016. 49(1-2): p. 467-485.
[49] Agarwal, P., A. Gupta, and R.G. Angadi, Effect of FRP wrapping on axial behavior of concrete and cyclic behavior of external RC beam column joints. KSCE Journal of Civil Engineering, 2014. 18(2): p. 566-573.
[50] Garcia, R., et al., Seismic strengthening of severely damaged beam-column RC joints using CFRP. Journal of composites for construction, 2013. 18(2): p. 04013048.
[51] zgür Yurdakul, Ö. and Ö. Avşar, Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs. Structural Engineering and Mechanics, 2015. 54(3): p. 521-543.
[52] Beydokhti, E.Z. and H. Shariatmadar, Strengthening and rehabilitation of exterior RC beam–column joints using carbon-FRP jacketing. Materials and Structures, 2016. 49(12): p. 5067-5083.
[53] Lee, W.-T., Y.-J. Chiou, and M. Shih, Reinforced concrete beam–column joint strengthened with carbon fiber reinforced polymer. Composite Structures, 2010. 92(1): p. 48-60.
[54] Esmaeeli, E., et al., A combination of GFRP sheets and steel cage for seismic strengthening of shear-deficient corner RC beam-column joints. Composite Structures, 2017. 159: p. 206-219.
[55] Mostofinejad, D. and M. Hajrasouliha, 3D beam–column corner joints retrofitted with X-shaped FRP sheets attached via the EBROG technique. Engineering Structures, 2019. 183: p. 987-998.
[56] Mostofinejad, D., et al., Innovative warp and woof strap (WWS) method to anchor the FRP sheets in strengthened concrete beams. Construction and Building Materials, 2019. 218: p. 351-364.
[57] Ilia, E. and D. Mostofinejad, Seismic retrofit of reinforced concrete strong beam–weak column joints using EBROG method combined with CFRP anchorage system. Engineering Structures, 2019. 194: p. 300-319.
[58] Tajmir-Riahi, A., et al., Effect of the EBROG method on strip-to-concrete bond behavior. Construction and Building Materials, 2019. 220: p. 701-711.
[59] Obaidat, Y.T., G.A. Abu-Farsakh, and A.M. Ashteyat, Retrofitting of partially damaged reinforced concrete beam-column joints using various plate-configurations of CFRP under cyclic loading. Construction and Building Materials, 2019. 198: p. 313-322.
[60] Allam, K., A.S. Mosallam, and M.A. Salama, Experimental evaluation of seismic performance of interior RC beam-column joints strengthened with FRP composites. Engineering Structures, 2019. 196: p. 109308.
[61] Mahini, S.S. and H.R. Ronagh, Web-bonded FRPs for relocation of plastic hinges away from the column face in exterior RC joints. Composite Structures, 2011. 93(10): p. 2460-2472.
[62] Kheyroddin, A., M. Saghafi, and S. Safakhah. Strengthening of historical masonry buildings with fiber reinforced polymers (FRP). in Advanced Materials Research. 2010. Trans Tech Publ.
[63] Wang, G.-L., J.-G. Dai, and Y.-L. Bai, Seismic retrofit of exterior RC beam-column joints with bonded CFRP reinforcement: An experimental study. Composite Structures, 2019. 224: p. 111018.
[64] Saghafi, M., Seismic performance of URM panels reinforced by FRP. MSc Structural thesis, Department of Civil Engineering, University of Semnan, 2009.
[65] Ombres, L., Flexural analysis of reinforced concrete beams strengthened with a cement based high strength composite material. Composite Structures, 2011. 94(1): p. 143-155.
[66] Engindeniz, M., L.F. Kahn, and Z. Abdul-Hamid, Repair and strengthening of reinforced concrete beam-column joints: State of the art. ACI structural journal, 2005. 102(2): p. 1.
[67] Barmi, C.G., M.H. Saghafi, and A. Golafshar. Seismic retrofit of severely damaged beam-column RC joints using HPFRCC. in Structures. 2023. Elsevier.
[68] Garcia, R., et al., Seismic strengthening of severely damaged beam-column RC joints using CFRP. Journal of Composites for Construction, 2014. 18(2): p. 04013048.
[69] Faleschini, F., et al., Repair of severely-damaged RC exterior beam-column joints with FRP and FRCM composites. Composite Structures, 2019. 207: p. 352-363.
[70] Naaman, A. Strain hardening and deflection hardening fiber reinforced cement composites. in Proc. 4th Int. RILEM Workshop on High Performance Fiber Reinforced Cement Composites, Ann Abor, University of Michigan. 2003.
[71] Saghafi, M.H., H. Shariatmadar, and A. Kheyroddin, Experimental Study and Application of High Performance Fiber Reinforced Cementitious Composites for Retrofitting Beam-Column Joints in Rigid-Framed Railway Bridges. Journal of Transportation Infrastructure Engineering, 2016. 2(1): p. 33-51.
[72] ASTM, A., C39/C39M-10 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. 2010. ASTM International: West Conshohocken, PA.
[73] JSCE, Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC). , in Concrete engineering series no. 82. 2008.
[74] 318, A.c. Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14). 2014. American Concrete Institute.
[75] Paulay, T. and M.N. Priestley, Seismic design of reinforced concrete and masonry buildings. 1992.