ارزیابی منحنی شکنندگی سازه قاب خمشی فولادی کوتاه مرتبه تحت اثر خوردگی و پس‌لرزه پس از زلزله اصلی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه سمنان
2 استاد گروه آموزشی عمران - زلزله، دانشکده مهندسی عمران، دانشگاه سمنان
چکیده
پس‌لرزه در سازه‌هایی که در اثر زلزله اصلی دچار خسارت شده‌اند ممکن است موجب خرابی گسترده گردد. از طرفی سازه‌های فولادی در مناطق شرجی مستعد پدیده خوردگی می‌باشند. اثر هم‌زمان خوردگی، خسارت ناشی از زلزله اصلی و پس‌لرزه می‌تواند خرابی‌های ایجادشده را تشدید نماید، اما در آیین‌نامه‌های کنونی اثر پس‌لرزه و خوردگی را در محاسبات لحاظ نمی‌کنند. در این مقاله به بررسی خرابی حاصل از اثر توأمان خوردگی، پس‌لرزه و خسارت حاصل از زلزله اصلی با استفاده از منحنی‌های شکنندگی که میزان آسیب‌پذیری سازه را مشخص می‌کند، پرداخته می‌گردد. سازه سه‌طبقه در ابتدا با استفاده از آیین‌نامه‌های طراحی مدل‌سازی شده و سپس برای ستون‌های طبقه اول آن خوردگی متناسب با 20 سال لحاظ گردیده و تحت تحلیل IDA افزایشی تحت رکورد زلزله اصلی و پس‌لرزه قرارگرفته و بیشترین جابه‌جایی نسبی طبقات به‌عنوان تقاضا تعیین می‌گردد و سپس در ادامه منحنی‌های شکنندگی برای سازه موردنظر ترسیم می‌گردد. با توجه به نتایج مشاهده می‌گردد که میزان آسیب‌پذیری سازه دچار خوردگی متناسب با 20 سال تحت اثر زلزله و پس‌لرزه نسبت به سازه فاقد خوردگی تحت زلزله اصلی و همچنین سازه فاقد خوردگی تحت زلزله اصلی و پس‌لرزه در میانه شکنندگی به ترتیب؛ درشدت خرابی کم و متوسط تفاوت معناداری مشاهده نمی‌گردد اما در سطوح خرابی شدید میزان آسیب‌پذیری 19% و 32% افزایش پیدا می‌کند، در 16% شکنندگی میزان آسیب پذیری به ترتیب؛ درشدت خرابی کم و متوسط تغییری نمی‌کند اما در سطوح خرابی شدید 22% و 37% افزایش می‌یابد و در سطح خرابی کامل حدود 30% و 52% افزایش پیدا می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Probabilistic Seismic Assessment of Low Rise Moment Resisting Steel Buildings Considering Effect of Main Shock -After Shock and Corrosion

نویسندگان English

Mohammad Hossein Razmkhah 1
Mohsen Ghaderi 1
Mohsen Gerami 2
1 Department of Earthquake Engineering, Faculty of Civil Engineering, Semnan University, Iran
2 Professor Of Department of Earthquake Engineering - Faculty of Civil Engineering
چکیده English

An earthquake referred to a sudden slip on a fault and the resulting ground shaking and radiated seismic energy caused by volcanic, magmatic activities, or other sudden stress changes in the earth. Earthquakes are likely to occur worldwide and cause great life and financial losses. It is impossible to predict and prevent earthquakes. However, its casualties can be minimized by designing and constructing safe structures and detecting and improving unsafe buildings. Moderate and excessive earthquakes are usually accompanied by aftershocks. Aftershocks in structures damaged by the main earthquake may cause extensive damage. On the other hand, steel structures in humid regions are prone to corrosion. The standards used in this research to check corrosion are ISO 9923 and ISO 9224 standards for calculating the amount of corrosion according to the life of the structure. The ISO 9223 standard examines the corrosion rate in the first year in different atmospheric environments, and ISO 9224 standard is used to calculate the corrosion rate for the following years.

The simultaneous effect of corrosion, main earthquake, and aftershock can aggravate the damage, but in the current regulations, the effect of aftershock and corrosion are not included in the calculations. In this research, damage resulting from the combined effect of corrosion, aftershock, and the main earthquake is investigated using fragility curves that determine the level of vulnerability of the structure. The three-story steel moment structure was initially modeled using the design regulations, and then the corrosion corresponding to 20 years was taken into account for the columns of the first floor, and it was subjected to incremental IDA analysis under the record of the main earthquake and aftershock, and the maximum drift of the floors was determined as the demand, and then in the following curves Fragility is drawn for the desired structure. The seismic fragility curves were calculated for four damage levels by selecting the relative displacement capacity at seismic performance levels of slight, moderate, extensive, and complete damage from the US Hazus code. The analysis was done using structural reliability relationships and incremental dynamic analysis (IDA) with the OpenSees software platform. According to the results, it can be seen that the corroded structure corresponding to 20 years with aftershock has no significant effect on the structure in the slight and moderate damage, but it increases by 32% in extensive damage levels, which shows that It has the destructive effect of corrosion combined with the aftershock effect.

In the end, it can be stated that if the intensity of the earthquake is low, the presence of aftershocks and corrosion corresponding to 20 years will not affect the performance of the structure, but if the intensity of the earthquake is high, the presence of corrosion and aftershocks can have destructive effects on the structure and even cause the complete collapse of the structure. Considering the mentioned cases and the seismicity of Iran, there is a need to retrofit corroded metal structures.

کلیدواژه‌ها English

Corrosion
aftershock
Fragility Curve
[1] M. G. Fontana, Corrosion Engineering (McGraw-Hill). Singapore, 1987.
[2] P. P. Milella, Fatigue and corrosion in metals. Springer Science & Business Media, 2012.
[3] X. Han, D. Y. Yang, and D. M. Frangopol, "Optimum maintenance of deteriorated steel bridges using corrosion resistant steel based on system reliability and life-cycle cost," Engineering Structures, vol. 243, p. 112633, 2021/09/15/ 2021, doi: https://doi.org/10.1016/j.engstruct.2021.112633.
[4] H. Wang, Z. Zhang, H. Qian, Y. Liu, N. Hu, and F. Fan, "Galvanic corrosion induced localized defects and resulting strength reduction of circular steel tubes under axial compression: An experimental study," Thin-Walled Structures, vol. 154, p. 106881, 2020/09/01/ 2020, doi: https://doi.org/10.1016/j.tws.2020.106881.
[5] X. Zhang, S. Zheng, and X. Zhao, "Experimental and numerical study on seismic performance of corroded steel frames in chloride environment," Journal of Constructional Steel Research, vol. 171, p. 106164, 2020/08/01/ 2020, doi: https://doi.org/10.1016/j.jcsr.2020.106164.
[6] H. Wang, Y. Wang, Z. Zhang, X. Liu, and S. Xu, "Cyclic behavior and hysteresis model of beam-column joint under salt spray corrosion environment," Journal of Constructional Steel Research, vol. 183, p. 106737, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.jcsr.2021.106737.
[7] C.-H. Zhai, W.-P. Wen, Z. Chen, S. Li, and L.-L. Xie, "Damage spectra for the mainshock–aftershock sequence-type ground motions," Soil Dynamics and Earthquake Engineering, vol. 45, pp. 1-12, 2013.
[8] Y. Li, R. Song, and J. W. Van De Lindt, "Collapse fragility of steel structures subjected to earthquake mainshock-aftershock sequences," Journal of Structural Engineering, vol. 140, no. 12, p. 04014095, 2014.
[9] M. Lew, F. Naeim, S. C. Huang, H. K. Lam, and L. D. Carpenter, "Geotechnical and geological effects of the 21 September 1999 Chi‐Chi earthquake, Taiwan," The Structural Design of Tall Buildings, vol. 9, no. 2, pp. 89-106, 2000.
[10] M. Parker and D. Steenkamp, "The economic impact of the Canterbury earthquakes," Reserve Bank of New Zealand Bulletin, vol. 75, no. 3, pp. 13-25, 2012.
[11] G. A. MacRae and K. Kawashima, "Seismic behavior of hollow stiffened steel bridge columns," Journal of Bridge Engineering, vol. 6, no. 2, pp. 110-119, 2001.
[12] J. C. Anderson and R. G. Johnston, "Performance of steel frame building which experienced intense ground motion," Journal of performance of constructed facilities, vol. 12, no. 4, pp. 186-198, 1998.
[13] R. Rahgozar, "Remaining capacity assessment of corrosion damaged beams using minimum curves," Journal of Constructional Steel Research, vol. 65, no. 2, pp. 299-307, 2009.
[14] C. Shi, H. Karagah, M. Dawood, and A. Belarbi, "Numerical investigation of H-shaped short steel piles with localized severe corrosion," Engineering structures, vol. 73, pp. 114-124, 2014.
[15] B. Trombly, "The international building code (IBC)," CMGT 564-Term Paper, 2006.
[16] D. G. Lignos, H. Krawinkler, and A. S. Whittaker, "Prediction and validation of sidesway collapse of two scale models of a 4‐story steel moment frame," Earthquake Engineering & Structural Dynamics, vol. 40, no. 7, pp. 807-825, 2011.
[17] Krawinkler and Whittaker, "Sidesway Collapse of Deteriorating Structural Systems Under Seismic Excitation," NEES Inc, 2007.
[18] Y. Li, R. Song, and W. Van De Lindt John, "Collapse Fragility of Steel Structures Subjected to Earthquake Mainshock-Aftershock Sequences," Journal of Structural Engineering, vol. 140, no. 12, p. 04014095, 2014/12/01 2014, doi: 10.1061/(ASCE)ST.1943-541X.0001019.
[19] ISO 9223:2012, I. STANDARD, Published in Switzerland 2012. [Online]. Available: https://www.iso.org/standard/53499.html
[20] ISO 9224, I. STANDARD, 2012.
[21] HAZUS MH-MR5, F. N. methodology, Washington DC, USA, 2003.
[22] S. Jalali, M. Banazadeh, A. Abolmaali, and E. Tafakori, "Probabilistic seismic demand assessment of steel moment frames with side-plate connections," Scientia Iranica, vol. 19, no. 1, pp. 27-40, 2012.