شناسایی و رتبه بندی عوامل مؤثر بر پذیرش فناوری حفاری بدون ترانشه در ایران

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشکده مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
چکیده
در جوامع امروزی، خطوط لوله به عنوان شریان های حیاتی، برای حفظ آسایش و رضایتمندی مردم از اهمیت بسزایی برخوردار است. با توجه به روند فزاینده توسعه در ایران، لزوم احداث، بازسازی، تعمیر و نگهداری تاسیسات زیرزمینی از جمله خطوط لوله نفت، گاز، آب، فاضلاب، رواناب و ارتباطات ، جزء لاینفک عملیات عمرانی و تاسیساتی است. با در نظر گرفتن مشکلات ناشی از حفاری های روباز و گسترش تاسیسات زیرزمینی، استفاده از روشهای حفاری بدون ترانشه در صنعت ساخت رو به افزایش است تا بتواند مشکلات را اقتصادی تر و موثر تر برطرف نماید. هدف از این پژوهش شناسایی و رتبه بندی مهمترین عوامل موثر بر پذیرش تکنولوژی حفاری بدون ترانشه در ایران است. تحقیق حاضر دارای هدف کاربردی است و به روش پیمایشی و توصیفی انجام شده است. جامعه آماری این تحقیق مدیران میانی، پیمانکاران و مهندسین دستگاه نظارت و بخش طراحی شرکت آب و فاضلاب اصفهان و آب منطقه ای چهارمحال و بختیاری بوده است. در این راستا، نمونه 87 نفری به صورت تصادفی انتخاب و پرسشنامه محقق ساخت بین آنها توزیع شد و تعداد 68 پرسشنامه جمع آوری شد. بر اساس آن 8 گروه اصلی و در قالب 28 معیار فرعی به عنوان عوامل موثر بر پذیرش حفاری بدون ترانشه در ایران دسته بندی و نتایج حاصل از آن مورد تحلیل قرار گرفت. جهت رتبه بندی عوامل موثر، از آزمون فریدمن استفاده شد و از نرم افزار SPSS جهت تحلیل داده ها به تجزیه و تحلیل داده ها پرداخته شد. بر این اساس در بین 8 گروه اصلی عوامل مدیریت اجرایی، محیطی، دموگرافیک، تکنولوژی، اقتصادی، بهره وری پروژه (مدیریت ساخت)، سازمانی و فردی به ترتیب رتبه های اول تا هشتم را بدست آورده اند. همچنین در بین 28 معیار، دستگاه نظارت، ریسک ها ، محیط زیست ، بودجه، مدیر عالی اجرایی، عملکرد مکانی و جغرافیایی و هزینه های مستقیم، رتبه های برتر را به خود اختصاص داده اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Identification and Ranking of Effective Factors on Accepting Trenchless Technology

نویسندگان English

S.H. Afzali.Borujeni
M.R. Zare
L. Adelzade Saadabadi
Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده English

In today’s society, pipelines as vital arteries play a significant role in maintaining people’s peace and satisfaction. According to growing developments in societies, the necessity of constructing, refurbishing, repairing, and maintaining underground installations such as petrol pipelines, gas, water, wastewater, runoffs, and connections is considered as the indispensable part of civil and installation operations. Regarding problems stemming from the open trench excavation methods and growth of underground installations, using trenchless technologies in the construction industry is increasing in order to solve the problems more economically and effectively. The present project aimed at recognizing and ranking the most important effective factors in accepting the trenchless technology in Iran. This research has a practical target and has been performed by the survey and the describing method. The statistical population of this research includes middle managers, contractors, and civil projects engineers of Isfahan province. In this regard, a sample of 87 people was randomly selected and the questionnaire was distributed among them. Eventually, a total of 68 questionnaires were collected with favorable consistency. This questionnaire has been designed by the investigator according to the Likert scale with high stability. Accordingly, the factors were grouped in the form of 28 criteria and 8 major groups as the effective factors on accepting the trenchless technology in Iran. Descriptive and inferential methods and the Friedman test were used to rank the effective factors, and the SPSS software was applied to analyze the data. Among the 8 major groups of executive management, environmental, demographics, technology, economically, project productivity (construction management), organizational, and individual had the first to the 8th rank, respectively. In addition, control system, risks, environment, budget, chief executive officer (CEO), special and geographical performance, and direct costs ranked the top among the 28 factors.

کلیدواژه‌ها English

Open trench
Trenchless technology
Underground installation
Friedman ranking
1. Ma B, Najafi M. Development and applications of trenchless technology in China. Tunn Undergr Sp Technol. 2008;23(4):476–80.
2. McKim R. Domestic sewer lateral replacement—a new method. In: Proc, NASTT No-Dig’95 Conf and Exhibition. 1995.
3. Chapman DN, Rogers CDF, Burd HJ, Norris PM, Milligan GWE. Research needs for new construction using trenchless technologies. Tunn Undergr Sp Technol. 2007;22(5–6):491–502.
4. Tornatzky L, Fleischer M. The process of technology innovation. Lexington, MA Lexingt Books. 1990;165.
5. Kramer SR, Gary GA. Comparison of Trenchless vs. Open-Cut Construction Methods for the Replacement of a Leaking Water Distribution System. In: Environmental and Pipeline Engineering 2000. 2000. p. 289–98.
6. Black B. Performance of trenchless techniques for sewer construction in Hong Kong. HKIE Trans. 2002;9(1):51–6.
7. Chenna R, Terala S, Singh AP, Mohan K, Rastogi BK, Ramancharla PK. Vulnerability assessment of buried pipelines: a case study. Front Geotech Eng. 2014;3(1):24–33.
8. Pruiksma JP, Pfeff D, Kruse HMG. The calculation of the thrust force for pipeline installation using the Direct Pipe method. In: Pipeline Technology Conference Proceedings. 2012.
9. Cording EJ, Hansmire WH. Displacements around soft ground tunnels, General Report, Session 4, 5th Panamerican Cong. on Soil Mech. and Foun. Engr Buenos Aires, Novemb. 1975;
10. Leca E, New B. Settlements induced by tunneling in soft ground. Tunn Undergr Sp Technol. 2007;22(2):119–49.
11. Atalah A. Case history of microtunneling through a very soft soil condition. Int J Econ Manag Eng. 2013;3(1):23.
12. Olson MP, Ariaratnam ST, Lueke JS. Jacking force and productivity analysis of pilot tube microtunneling installations. J Pipeline Syst Eng Pract. 2016;7(1):4015018.
13. Chakeri H, Ozcelik Y, Unver B. Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB. Tunn Undergr Sp Technol. 2013;36:14–23.
14. Bennett RD. Jacking forces and ground deformations associated with microtunneling. Urbana, IL Ph D Diss Univ Illinois. 1998;
15. Chothe OK, Kadam VS. Comparative Study of traditional method and innovative method for Trenchless Technology: A Review. Int Res J Eng Technol. 2016;3(05).
16. Salah M, Samra SA, Hosny O. Analytical Hierarchy Process Decision Support System (AHP-DSS) for Trenchless Technology. In: ISARC Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC Publications; 2016. p. 1.
17. Hobohm, S., Ertelt, S., Rammelsberg J. Trenchless installation techniques using ductile iron pipes. Tiroler Rohre GmbH Innsbrucker Straße 51 6060 Hall in Tirol Austria; 2013. 64 p.
18. Najafi M. Trenchless technology: Planning, equipment, and methods. McGraw Hill Professional; 2013.
19. Jannadi OA. Risks associated with trenching works in Saudi Arabia. Build Environ. 2008;43(5):776–81.
20. Woodroffe NJ, Ariaratnam ST. Cost and risk evaluation for horizontal directional drilling versus open cut in an urban environment. Pract Period Struct Des Constr. 2008;13(2):85–92.
21. Zaneldin EK. Trenchless construction: an emerging technology in United Arab Emirates. Tunn Undergr Sp Technol. 2007;22(1):96–105.
22. Scupola A. The adoption of Internet commerce by SMEs in the south of Italy: An environmental, technological and organizational perspective. J Glob Inf Technol Manag. 2003;6(1):52–71.
23. Asghari Zadeh, E., Nasrollahi . Identifying and determining the weight of effective indicators in selecting contractors for construction projects. Manag Res (In Persian). 2008;(2):105–22.
24. Brady KC, Burtwell M, Thomson JC. Mitigating the disruption caused by utility street works. TRL Limited Crowthorne, UK; 2001.
25. McKim RA. Selection method for trenchless technologies. J Infrastruct Syst. 1997;3(3):119–25.
26. Xueqing W, Bingsheng L, Allouche EN, Xiaoyan L. Practical bid evaluation method considering social costs in urban infrastructure projects. In: 2008 4th IEEE International Conference on Management of Innovation and Technology. IEEE; 2008. p. 617–22.
27. Matthews JC, Allouche EN, Sterling RL. Social cost impact assessment of pipeline infrastructure projects. Environ Impact Assess Rev. 2015;50:196–202.
28. Saied SAM, Moarefvand P, Shahrivar Ghozollou J. A cost comparison among different method of urban sewage tunnel drilling. In: 4th Iranian Mining Engineering Conference, Tehran university (in persian). 2012.
29. Jung YJ, Sinha SK. Evaluation of trenchless technology methods for municipal infrastructure system. J Infrastruct Syst. 2007;13(2):144–56.
30. Hay S. A comparative study of trenchless technologies versus traditional open trenching for the replacement of ageing potable water pipelines. 2014.
31. Matthews JC, Allouche EN. Fully automated decision support system for assessing the suitability of trenchless technologies. J Pipeline Syst Eng Pract. 2012;3(2):55–64.
32. Department of Housing, planning C and LGA. Santry to East Wall Pipeline Replacement Project, River Tolka Crossing Description and Method Statement. Ireland (Arup): Department of Housing, planning, Commuinty and Local Government. Application, https://www.housing.gov.ie/sites/default/files/foreshore-applications/application- documents/application_form_method_statement_and_environmental_report.pdf.; 2011.
33. Chao L-C, Skibniewski MJ. Estimating construction productivity: Neural-network-based approach. J Comput Civ Eng. 1994;8(2):234–51.
34. Chau PYK, Tam KY. Factors affecting the adoption of open systems: an exploratory study. MIS Q. 1997;1–24.
35. Damanpour F, Schneider M. Characteristics of innovation and innovation adoption in public organizations: Assessing the role of managers. J public Adm Res theory. 2009;19(3):495–522.
36. Movahedi M, Ahmadvand A, Aliyari S, Namjooyan F. The Role of Effective Individual, Organizational and Managerial Factors on Adopting Information Technology in Iranian State Organizations. Res Hum Resour Manag [In Persian]. 2015;7(3):1–28.
37. Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: Toward a unified view. MIS Q. 2003;425–78.
38. Sargent K, Hyland P, Sawang S. Factors influencing the adoption of information technology in a construction business. Australas J Constr Econ Build. 2012;12(2):72.
39. Tornatzky LG, Klein KJ. Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Trans Eng Manag. 1982;(1):28–45.
40. Rogers EM. Diffusion of Innovations. Third Edit. New York : Free Press ; London : Collier Macmillan, ©1983.; 1983.
41. Gatignon H, Robertson TS. Technology diffusion: an empirical test of competitive effects. J Mark. 1989;53(1):35–49.
42. Thong JYL. An integrated model of information systems adoption in small businesses. J Manag Inf Syst. 1999;15(4):187–214.
43. Kuan KKY, Chau PYK. A perception-based model for EDI adoption in small businesses using a technology–organization–environment framework. Inf Manag. 2001;38(8):507–21.
44. Wang Y-M, Wang Y-S, Yang Y-F. Understanding the determinants of RFID adoption in the manufacturing industry. Technol Forecast Soc Change. 2010;77(5):803–15.
45. Tsai W-C, Tang L-L. A model of the adoption of radio frequency identification technology: The case of logistics service firms. J Eng Technol Manag. 2012;29(1):131–51.
46. Rosli K, Yeow PHP, Siew E-G. Computer-assisted auditing tools acceptance using I-Toe: a new paradigm. Computer (Long Beach Calif). 2012;7:15–2012.
47. Rosli K, Yeow PHP, Siew E-G. Factors influencing audit technology acceptance by audit firms: A new I-TOE adoption framework. J Account Audit. 2012;2012:1.
48. Gao J, Li M, Tan CY. A concept model for innovation diffusion in construction industry. In: International Conference on Innovations in Engineering and Technology (ICIET’2013) Bangkok (Thailand). 2013. p. 25–6.
49. Sepasgozar SME, Bernold LE. Factors influencing the decision of technology adoption in construction. In: ICSDEC 2012: Developing the Frontier of Sustainable Design, Engineering, and Construction. 2013. p. 654–61.
50. Schmitt P, Michahelles F. Towards a successful RFID adoption. 2009;
51. Schmitt P, Michahelles F. Status of RFID/EPC adoption. AutoID Labs. 2009;
52. Tan KS, Teo WL, Lai KP. The applicability of information technology governance in the Malaysian SMEs. J Innov Manag Small Mediu Enterp. 2011;2011:1–10.
53. Adeleke AQ, Bahaudin AY, Kamaruddeen AM, Bamgbade JA, Salimon MG, Khan MWA, et al. The Influence of Organizational External Factors on Construction Risk Management among Nigerian Construction Companies. Saf Health Work [Internet]. 2018;9(1):115–24. Available from: https://www.sciencedirect.com/science/article/pii/S2093791116302153
54. Zhu K, Kraemer K, Xu S. Electronic business adoption by European firms: a cross-country assessment of the facilitators and inhibitors. Eur J Inf Syst. 2003;12(4):251–68.
55. Janvrin D, Bierstaker J, Lowe DJ. An examination of audit information technology use and perceived importance. Account Horizons. 2008;22(1):1–21.
56. Lin C-Y, Ho Y-H. An empirical study on the adoption of RFID technology for logistics service providers in China. Int Bus Res. 2009;2(1):23–36.
57. Makulsawatudom A, Emsley M, Sinthawanarong K. Critical factors influencing construction productivity in Thailand. J KMITNB. 2004;14(3):1–6.
58. Bagherinejhad J, Malahi MR. Project Management Role in Technology Transfer Process. Manag Stud Dev Evol. 2007;18(55):149–72.
59. Dai J, Goodrum PM, Maloney WF. Construction craft workers’ perceptions of the factors affecting their productivity. J Constr Eng Manag. 2009;135(3):217–26.
60. Moselhi O, Khan Z. Analysis of labour productivity of formwork operations in building construction. Constr Innov. 2010;
61. Goodrum PM, Haas CT, Caldas C, Zhai D, Yeiser J, Homm D. Model to predict the impact of a technology on construction productivity. J Constr Eng Manag. 2011;137(9):678–88.
62. Dabirian S. Modelling of labor productivity in construction industry using system dynamics. Iran University of Science and Technology; 2015.
63. Kerzner H. Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons; 2017.
64. Edition PGS. A Guide to the Project Management Body of Knowledge. Pensylvania: Project Management Institute; 2018.
65. Grover V, Goslar MD. The initiation, adoption, and implementation of telecommunications technologies in US organizations. J Manag Inf Syst. 1993;10(1):141–64.
66. Sabherwal R, King WR. An empirical taxonomy of the decision-making processes concerning strategic applications of information systems. J Manag Inf Syst. 1995;11(4):177–214.
67. Premkumar G, Roberts M. Adoption of new information technologies in rural small businesses. Omega. 1999;27(4):467–84.
68. Zhu K, Kraemer K, Xu S. A cross-country study of electronic business adoption using the technology-organization-environment framework. ICIS 2002 Proc. 2002;31.
69. Tarafdar M, Vaidya SD. Challenges in the adoption of E-Commerce technologies in India: The role of organizational factors. Int J Inf Manage. 2006;26(6):428–41.
70. Slevin DP, Covin JG. Juggling entrepreneurial style and organizational structure. MIT Sloan Manag Rev. 1990;31(2):43.
71. Camra-Fierro, J., Centeno, E., Bordonaba-Juste, V., Lucia-Palacios, L., & Polo-Redondo Y. The influence of organizational factors on e-business use: Analysis of firm size. Mark Intell Plan. 2012;30(2):212–229.
72. Chan SCH, Ngai EWT. A qualitative study of information technology adoption: how ten organizations adopted Web‐based training. Inf Syst J. 2007;17(3):289–315.
73. Ajzen I, Fishbein M. Understanding attitudes and predicting social behavior Prentice-Hall Inc. Englewood Cliffs, NJ. 1980;
74. Harsono LD, Suryana LA. Factors affecting the use behavior of social media using UTAUT 2 model. In: Proceedings of the first Asia-Pacific Conference on global business, economics, finance and social sciences. 2014. p. 1–14.
75. Lee S, Yu J, Jeong D. BIM acceptance model in construction organizations. J Manag Eng. 2015;31(3):4014048.
76. Ramen M, Jugurnath B, Ramhit P. UTR-CTOE: a new paradigm explaining CAATs adoption. J Mod Account Audit. 2015;11(12):615–31.
77. Sepasgozaar SME, Shirowzhan S, Wang CC. A scanner technology acceptance model for construction projects. Procedia Eng. 2017;180:1237–46.
78. Lee H, Najafi M, Matthys J. Cost comparison of pipeline asset replacement: Open-cut and Pipe-bursting. In: Pipelines 2007: Advances and Experiences with Trenchless Pipeline Projects. 2007. p. 1–11.
79. Clark RH, Browning KR. Benefit/cost analysis of trenchless alternatives. AACE Int Trans. 1992;2:Q-1.
80. Boyce GM, Bried EM. Estimating the social cost savings of trenchless techniques. No-Dig Eng. 1994;1(2):2–5.
81. Najafi M. Trenchless technology: Pipeline and utility design, construction, and renewal. McGraw-Hill Education; 2005.
82. Technology IS for T, Centre UIET. Trenchless Technology Systems: An Environmentally Sound Approach for Underground Services: an Introductory Guide for Decision-makers. Vol. 1. UNEP; 2001.
83. Muntean O-L, Drăgut L, Baciu N, Man T, Buzilă L, Ferencik I. Environmental impact assessment as a tool for environmental restoration: the case study of Copşa-Mică area, romania. In: Use of Landscape Sciences for the Assessment of Environmental Security. Springer; 2008. p. 461–74.
84. Gholamalifard M, Mirzaei M, Hatamimanesh M, Riyahi Bakhtiari A, Sadeghi M. Application of rapid impacts assessment matrix and Iranian matrix in environmental impact assessment of municipal solid waste landfill of Shahrekord. J Shahrekord Univ Med Sci. 2014;16(1).
85. Moch MK, Morse E V. Size, centralization and organizational adoption of innovations. Am Sociol Rev. 1977;716–25.