ارزیابی احتمالاتی جابجایی نسبی پسماند سازه‌های دارای حرکت گهواره‌ای با مهاربندهای کمانش ناپذیر تحت اثر زلزله‌های پوسته‌ای و فرورانشی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 کارشناس ارشد مهندسی زلزله، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
2 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
چکیده
برای کنترل تمرکز خسارت در یک طبقه و ایجاد توزیع یکنواخت جابجایی نسبی طبقه در ارتفاع سازه، می‏‌توان از یک سیستم نوین تحت عنوان سازه‌ دارای حرکت گهوارهای با مهاربندهای کمانش ناپذیر (RBRBF) استفاده کرد. در سازه‌های RBRBF بر خلاف قاب‏های مهاربندی متداول یا قاب‏های با مهاربندهای زیپی، مهاربندهای یک سمت دهانه مهاربندی شده همراه با ستون‏‌های مجاور آنها و المان‏‌های رابط بخشی از یک سیستم خرپای قائم الاستیک هستند که در پایه مفصلی می‌‏باشد و به‏‌گونه‌‏ای طراحی می‏‌شود که تا نزدیک فروریزش سازه الاستیک باقی بماند، خرپای قائم الاستیک مانند یک تکیه‌گاه قوی در برابر تمایل قاب‌ مهاربندی به تمرکز خسارت در یک یا چند طبقه در هنگام زلزله مقاومت می‌کند. سمت دیگر دهانه مهاربندی شده مجهز به مهاربند‏های کمانش ناپذیر می‏‌باشد که نقش مستهلک کننده انرژی را دارند و می‌‏توانند وارد محدوده رفتار غیرالاستیک شوند. روش طراحی سازه‌های RBRBF یک روش مبتنی بر تغییرمکان می‌باشد. در این مطالعه، شش سازه‌ی 4، 8 و 12 طبقه با دو سیستم RBRBF و قاب با مهاربندهای کمانش ناپذیر (BRBF) با استفاده از نرم‌افزار متن‌باز OpenSees به صورت غیرخطی مدلسازی شدند، و مقادیر ظرفیت جابجایی نسبی پسماند سازه‌ها به ازای 4 سطح جابجایی نسبی پسماند 0/2، 0/5، 1 و 2 درصد با استفاده از تحلیل‌های دینامیکی افزاینده تحت اثر 22 جفت رکورد پوسته‌ای و فروانشی بدست آمدند. سپس، به ازای این 4 سطح جابجایی نسبی پسماند، نتایج بدست آمده بر حسب نسبت حاشیه ایمنی جابجایی نسبی پسماند، RDMR، و میانگین فراوانی سالیانه عبور از سطح جابجایی پسماند مورد نظر، λRD، با یکدیگر مقایسه شدند. نتایج نشان دادند که سازه‌های RBRBF تحت هر دو مجموعه رکوردهای پوستهای و فرورانشی عملکرد جابجایی نسبی پسماند بسیار مناسب‌تری در مقایسه با سازه‌های BRBF دارند. بر اساس این نتایج، استفاده از سازه‌های RBRBF به طور قابل توجهی نقاط ضعف سازه‌های BRBF از جمله تمرکز خسارت در یک طبقه و کاهش سختی بعد از تسلیم را بهبود می‌دهد. به عنوان مثال، نسبت λRD کل به ازای سطح جابجایی نسبی پسماند دو درصد برای سیستم BRBF به مقدار متناظر آن برای سیستم RBRBF برای سازه‌های 4، 8 و 12 طبقه به ترتیب برابر با 21/10، 4/06 و 3/21 بدست آمد. علاوه بر این، در اکثر سازه‌های مورد مطالعه با افزایش سطح جابجایی نسبی پسماند، نسبت RDMR تحت رکوردهای پوسته‌ای به مقدار متناظر آن تحت رکوردهای فرورانشی افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Probabilistic residual drift assessment of rocking buckling restrained braced frames under crustal and subduction ground motion records

نویسندگان English

mehran mirzaei 1
Mansoor Yakhchalian 2
mahshid tavakoli 1
Mohammad Hosein Soltani 1
1 Master of Science, Department of Civil Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
چکیده English

Buckling restrained braced frames (BRBFs) are widely used as a lateral force resisting system due to their advantageous characteristics such as elimination of brace buckling in compression, high ductility and energy dissipation. BRBFs may have damage concentration in one or few stories during severe seismic excitations, because buckling restrained brace (BRB) yields in a certain story and the stiffness of that story significantly decreases. Drift concentration is undesirable as it can lead to general instability resulting from P-Δ effects or residual drift. For controlling damage concentration in one or few stories and achieving a uniform distribution of drifts in all stories, a new system entitled rocking buckling restrained braced frame (RBRBF) can be used. RBRBF system generates uniform story drifts over the height of structure and prevents the damage concentration in one or few stories. Unlike conventional or suspended zipper braced frames, the braces on one side of the braced span along with the adjacent columns and ties are part of a vertical truss system that is hinged at the base and designed to remain elastic until the near collapse limit state is reached. This vertical truss system works as a strong support for preventing damage concentration in one or few stories of the braced frame. The braces on the other side of the braced span are BRBs and are designed to provide energy dissipation. RBRBFs are designed according to a displacement‐based approach. The novelty of this paper is investigating the residual drift performance of this new structural system under the effect of subduction ground motion records, which have higher significant durations compared with crustal ground motion records. In this study, 4-, 8-, and 12-story structures with RBRBF and BRBF systems are considered, and their residual drift capacity values given four maximum residual interstory drift ratio (MRIDR) levels of 0.2%, 0.5%, 1.0% and 2.0% are computed using incremental dynamic analyses (IDAs). IDAs are performed on two-dimensional models of the structures using 22 pairs of short-duration crustal and long-duration subduction ground motion records. After computing the capacity values given these four MRIDR levels, the residual drift margin ratios (RDMR), and the mean annual frequencies (MAFs) of exceeding different MRIDR levels (λRD) are obtained. The results demonstrate that all the RBRBFs have better residual drift performance than the BRBFs. Based on these results, the use of RBRBF dramatically reduces BRBF weaknesses including the concentration of damage in a certain story and low post-yield stiffness. For example, the ratios of the total λRD value given MRIDR= 2.0% for the BRBF system to its corresponding value for the RBRBF system for the 4-, 8-, and 12-story structures are 21.10, 4.06, and 3.21, respectively. In addition, for most of the structures, as the MRIDR level increases, the ratio of the RDMR value under crustal records to that under subduction records increases.

کلیدواژه‌ها English

Crustal and subduction ground motion records
Residual drift
damage concentration
rocking buckling restrained braced frame
Incremental dynamic analysis
[1] Bosco, M., Marino, E.M., Rossi, P.P., 2018 A design procedure for pin‐supported rocking buckling‐restrained braced frames, Earthquake Engineering & Structural Dynamics, 47(14), 2840-2863.‏
[2] Feng, Y., Zhang, Z., Chong, X., Wu, J., Meng, S., 2018 Elastic displacement spectrum-based design of damage-controlling BRBFs with rocking walls, Journal of Constructional Steel Research, 148, 691-706.‏
[3] Black, C., Makris, N., Aiken, I., 2002 Component testing, stability analysis and characterization of buckling restrained braces, PEER Report 2002/08, Pacific Earthquake Engineering Research Center, University of california at berkeley.‏
[4] Uriz, P., Mahin, S., 2008 Toward earthquake resistant design of concentrically braced steel frame structures, PEER report 2008/08, University of California, Berkeley, USA.‏
[5] Kumar, G.R., Kumar, S.S., Kalyanaraman, V., 2007 Behaviour of frames with non-buckling bracings under earthquake loading, Journal of constructional steel research, 63(2), 254-262.‏
[6] Asgarian, B., Amirhesari, N., 2008 A comparison of dynamic nonlinear behavior of ordinary and buckling restrained braced frames subjected to strong ground motion, The Structural Design of Tall and Special Buildings, 17(2), 367-386.‏
[7] Pachideh, G., Gholhaki, M., Lashkari, R., Rezayfar, O., 2020 Behavior of BRB Equipped with a Casing Comprised of Steel and Polyamide, Institution of Civil Engineers-Structures and Buildings.‏
[8] Lai, J.W., Mahin, S.A., 2015 Strongback system: A way to reduce damage concentration in steel braced frames, Journal of Structural Engineering, 141(9).
[9] Tremblay, R., Poncet, L., 2005 Seismic performance of concentrically braced steel frames in multistory buildings with mass irregularity, Journal of Structural Engineering, 131(9), 1363-1375.‏
[10] Khatib, I. F., Mahin, S. A., Pister, K. S., 1988 Seismic behavior of concentrically braced steel frames, Berkeley, CA, USA, UCB/EERC‐88/01: Earthquake Engineering Research Center, University of California.
‏[11] Bosco, M., Rossi, P. P., 2009 Seismic behaviour of eccentrically braced frames, Engineering Structures, 31(3), 664-674.‏
[12] Rossi, P. P., 2007 A design procedure for tied braced frames, Earthquake engineering & structural dynamics, 36(14), 2227-2248.‏
[13] Pachideh, G., Gholhaki, M., Kafi, M., 2020 Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper, Steel and Composite Structures, 36(2), 197.
[14] Pachideh, G., Kafi, M., Gholhaki, M., 2020 Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater, Structures, 28, 467-481.
[15] Gholhaki, M., Pachideh, G., 2015 Investigating of damage indexes results due to presence of shear wall in building with various stories and spans, Int J Rev Life Sci, 5(1), 992-997.
[16] Pachideh, G., Gholhaki, M., Daryan, A. S., 2019 Analyzing the damage index of steel plate shear walls using pushover analysis, Structures, 20, 437-451.
[17] Tremblay, R., Merzouq, S., 2005 Assessment of Seismic Design forces in Dual Buckling Restrained Braced Steel Frames, In Proc. First International Workshop on Advances in Steel Constructions, Ischia, Italy, 739-746.‏
[18] Foschaar, J. C., Baker, J. W., Deierlein, G. G., 2012 Preliminary assessment of ground motion duration effects on structural collapse. In: 15th World Conference on Earthquake Engineering, Lisbon: National Information Centre of Earthquake Engineering.
[19] Chandramohan, R., Baker, J. W., Deierlein, G. G., 2016 Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records, Earthquake Spectra, 32(2), 927-950.
[20] Barbosa, A.R., Ribeiro, F.L., Neves, L.A., 2017 Influence of earthquake ground‐motion duration on damage estimation: application to steel moment resisting frames, Earthquake Engineering & Structural Dynamics, 46(1), 27-49.
[21] Bravo-Haro, M. A., Elghazouli, A. Y., 2018 Influence of earthquake duration on the response of steel moment frames. Soil Dynamics and Earthquake Engineering, 115, 634-651.‏
[22] C.S.I. 2016, Computer program ETABS ultimate 2015, Computers and Structures Inc., Berkeley, California.
[23] ASCE/SEI 7-10., 2010 Minimum design loads for buildings and other structures, Reston: American Society of Civil Engineers.
[24] FEMA 356, F. E., 2000 Prestandard and commentary for the seismic rehabilitation of buildings, Federal Emergency Management Agency: Washington, DC, USA.‏
[25] Eurocode 8., 2003 Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings, Brussels: European Committee for Standardization.
[26] ANSI/AISC 360-10., 2010 Specification for structural steel buildings, Chicago: American Institute of Steel Construction.
[27] ANSI/AISC 341-10., 2010 Seismic provisions for structural steel buildings, Chicago: American Institute of Steel Construction.
[28] GCR 10-917-8., 2010 Evaluation of the FEMA P-695 methodology for quantification of building seismic performance factors, Gaithersburg: National Institute of Standards and Technology (NIST).
[29] Krawinkler, H., 2000 State of the art report on systems performance of steel moment frames subject to earthquake ground shaking, Federal Emergency Management Agency, Report no. FEMA-355C, SAC Joint Venture.‏
[30] McKenna, F., Fenves, G.L. Scott, M.H., 2015 Open system for earthquake engineering simulation, Berkeley: Pacific Earthquake Engineering Research Center.
[31] Yakhchalian, M., Yakhchalian, M., and Asgarkhani, N., 2021 An advanced intensity measure for residual drift assessment of steel BRB frames, Bulletin of Earthquake Engineering, 19, 1931-1955.‏
[32] Yakhchalian, M., Asgarkhani, N., Yakhchalian, M., 2020 Evaluation of deflection amplification factor for steel buckling restrained braced frames, Journal of Building Engineering, 30.
[33] Gray, M.G., 2012 Cast steel yielding brace system for concentrically braced frames, Ph.D. Dissertation. University of Toronto.
[34] Guerrero, H., Tianjian, Ji., Teran-Gilmore, A. Alberto Escobar, J., 2016 A method for preliminary seismic design and assessment of low-rise structures protected with Buckling-Restrained Braces, Engineering Structures, 123, 141-154.
[35] FEMA P-58-1., 2012 Seismic Performance Assessment of Buildings, Methodology.‏
[36] Kitayama, S., Constantinou, M. C., 2016 Probabilistic collapse resistance and residual drift assessment of buildings with fluidic self‐centering systems, Earthquake Engineering & Structural Dynamics, 45(12), 1935-1953.‏
[37] Yahyazadeh, A., Yakhchalian, M., 2018 Probabilistic residual drift assessment of SMRFs with linear and nonlinear viscous dampers, Journal of Constructional Steel Research, 148, 409-421.‏
[38] Kamaris, G. S., Papavasileiou, G. S., Kamperidis, V. C., Vasdravellis, G., 2022 Residual drift risk of self-centering steel MRFs with novel steel column bases in near-fault regions, Soil Dynamics and Earthquake Engineering, 162, 107391.‏
[39] Kitayama, S., Constantinou, M. C., 2018 Seismic performance of buildings with viscous damping systems designed by the procedures of ASCE/SEI 7-16. Journal of Structural Engineering, 144(6), 04018050.‏
[40] Tzimas, A. S., Kamaris, G. S., Karavasilis, T. L., Galasso, C., 2016 Collapse risk and residual drift performance of steel buildings using post-tensioned MRFs and viscous dampers in near-fault regions, Bulletin of Earthquake Engineering, 14, 1643-1662.‏
[41] Atlayan, O., 2013 Hybrid steel frames (Doctoral dissertation, Virginia Tech).‏
[42] Sabelli, R., 2001 Research on improving the design and analysis of earthquake-resistant steel-braced frames, Oakland, CA, USA: EERI.‏ pp. 1-142.
[43] Asgarkhani, N., Yakhchalian, M., Mohebi, B. 2020 Evaluation of approximate methods for estimating residual drift demands in BRBFs, Engineering Structures, 224.‏
[44] Yakhchalian, M., Ghodrati Amiri, G., Nicknam, A., 2014 A new proxy for ground motion selection in seismic collapse assessment of tall buildings, The Structural Design of Tall and Special Buildings, 23(17), 1275-1293.‏
[45] Raghunandan, M., Liel, A.B. Luco, N., 2015 Collapse risk of buildings in the Pacific northwest region due to subduction earthquakes, Earthquake Spectra, 31(4), 2087-2115.
[46] U.S. Geological Survey, 2021 https://earthquake.usgs.gov/hazards/interactive/.
[47] Eads, L., 2013 Seismic collapse risk assessment of buildings: effects of intensity measure selection and computational approach, Stanford University.