معرفی و بررسی عملکرد یک سیستم جداساز لرزه ای ترکیبی با قابلیت مرکزگرایی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس
چکیده
در این پژوهش یک سیستم جداساز الاستومر با هسته­ی سربی در ترکیب با اصطکاک معرفی شده که دارای قابلیت مرکزگرایی است. یک پوسته­ی گنبدی بر روی سیستم جداساز الاستومر-سرب قرار گرفته و از اصطکاک آن پوسته با سطح زیرین سیستم نیروی اصطکاکی ایجاد می­شود. به کار بردن عملکرد اصطکاک در ترکیب سیستم جداسازی الاستومری باعث افزایش ظرفیت میرایی آن شده و همچنین وجود این پوسته­ مانع از ضربه و برخورد ناگهانی اجزای سازه به سیستم جداسازی می­شود. با توجه به رفتار فوق ارتجاعی آلیاژ حافظه شکلی، از این آلیاژ برای افزایش ظرفیت مرکزگرایی سیستم جداسازی استفاده شده است. راهبرد طراحی سیستم جداساز مرکزگرا در این پژوهش بر اساس چندین هدف که از جمله آن؛ ایجاد قابلیت مرکزگرایی، کنترل مقدار نیروی برشی و سختی جانبی سیستم در نظر گرفته شده است. عملکرد سیستم جداساز پیشنهاد شده نیز دوخطی بوده و بر اساس کرنشی که تغییر فاز آلیاژ در آن کرنش رخ می­دهد، تعریف می­شود .سیستم پیشنهادی به علت دارا بودن هندسه خاص و قرار گیری متقارن المان­ها در سیستم نسبت هر راستای زلزله عکس­العمل متناسب دارد. در این پژوهش یک نمونه آزمایشگاهی سیستم جداساز الاستومر-سرب در نظر گرفته شده و تاثیر رفتار آلیاژ حافظه شکلی و عملکرد اصطکاک بر آن بررسی شده است. نتایج حاکی از آن است عملکرد سیستم جداساز ترکیبی مرکزگرا نسبت به سیستم جداساز الاستومر-سرب در ظرفیت استهلاک انرژی، مقدار نیروی برشی به ترتیب 50 و 150 درصد افزایش و در تغییرشکل پسماند تا حدود 45 درصد کاهش یافته است. در پایان عملکرد این سیستم نسبت به مولفه­های حساس بررسی شده و با توجه به نتایج نشان داده شده است که عملکرد سیستم پیشنهاد شده توسط این پژوهش نسبت به مولفه ضریب ابعادی، نسبت به سیستم جداساز الاستومر-سرب حساسیت کمتری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Introduction and Performance Investigation of a Hybrid Base Isolation System with Re-centering Capability

نویسندگان English

SH. Parvizi
H. Khezrzadeh
Faculty of Civil and Environmental Engineering, Tarbiat Modares University
چکیده English

Regarding the high cost of retrofitting and replacing the isolation system after an earthquake, re-centering seismic isolation systems have become one of the most popular research fields in the past decades. A new generation of seismic isolation is based on equipment with improved performance in terms of damping and re-centering capability. Since lead-rubber base isolation (LRB) is one of the most common seismic isolation systems, this paper focused on suggesting a re-centering LRB system with high damping capacity. The LRB isolation is based on an experimental study under a constant vertical load equal to 650 kN. The proposed combined system of LRB and friction yields a high damping capacity. A spherical shell is placed on the base isolation system, and the friction reaction emanates from this shell's sliding on the provided foundation. The primary purpose of this spherical shell is to increase the damping capacity of the isolation system. An adjustable friction reaction is reachable depending on the connection details of the spherical steel shell with the system's upper steel cap plate. The higher stiffness of this connection is provided greater friction force and, as a result, higher damping capacity. In short, this connection was performed as adjustable friction and can increase energy dissipation and maximum shear force, respectively, in the range of 12% to 80% and 6% to 230%. Increasing re-centering capacity is another goal of this study. It is of great interest to implement shape memory alloy (SMA) in the form of wires because of their re-centering capabilities. The axisymmetric design is implemented to reduce this hybrid system's vulnerability to earthquakes of arbitrary direction. The combined action of wires and the spherical steel shell provides the re-centering capacity of the system.

The final system, which is a combination of LRB, friction mechanism, and vertical load transfer through SMA wires (MDLRB-SMA), exhibits enhanced properties such as reduced residual deformation, controllable shear reaction at each stage of the deformation, and increased damping capacity. The energy dissipation capacity of the MDLRB-SMA is shown to be increased by 50%, with a decreased residual deformation of up to 45% compared to the LRB. A set of parametric studies are also performed to investigate the influence of frequency, displacement amplitude, loading rate, the wires' configuration and properties, and the aspect ratio of the system's performance.

کلیدواژه‌ها English

LRB
Shape memory alloys
Damping Capacity
finite element method
Adjustable Friction Reaction
Re-centering Capability
[1] Kapasakalis KA, Antoniadis IA, Sapountzakis EJ. Performance assessment of the KDamper as a seismic absorption base. Structural Control and Health Monitoring. 2020 Apr;27(4):e2482.
[2] Pachideh G, Kafi M, Gholhaki M. Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater. InStructures 2020 Dec 1 (Vol. 28, pp. 467-481). Elsevier.
[3] Pachideh G, Gholhaki M, Kafi M. Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper. Steel and Composite Structures. 2020;36(2):197-211.
[4] Zheng WZ, Wang H, Li J, Shen HJ. Parametric study of SMA-based friction pendulum system for response control of bridges under near-fault ground motions. Journal of Earthquake Engineering. 2021 Jul 3;25(8):1494-512.
[5] Chakraborty S, Roy K, Ray-Chaudhuri S. Design of re-centering spring for flat sliding base isolation system: Theory and a numerical study. Engineering Structures. 2016 Nov 1;126:66-77.
[6] Liu Y, Wang H, Qiu C, Zhao X. Seismic behavior of superelastic shape memory alloy spring in base isolation system of multi-story steel frame. Materials. 2019 Mar 26;12(6):997.
[7] Qiu C, Tian L. Feasibility analysis of SMA-based damping devices for use in seismic isolation of low-rise frame buildings. International Journal of Structural Stability and Dynamics. 2018 Jun 17;18(06):1850087.
[8] Wilde K, Gardoni P, Fujino Y. Base isolation system with shape memory alloy device for elevated highway bridges. Engineering structures. 2000 Mar 1;22(3):222-9.
[9] Dang XZ, Yang HL, Yuan WC, Song DQ. Experimental investigation on composite seismic isolation system. InAdvanced Materials Research 2013 (Vol. 743, pp. 146-149). Trans Tech Publications Ltd.
[10] Dezfuli FH, Alam MS. Shape memory alloy wire-based smart natural rubber bearing. Smart Materials and Structures. 2013 Mar 11;22(4):045013.
[11] Dezfuli FH, Alam MS. Performance-based assessment and design of FRP-based high damping rubber bearing incorporated with shape memory alloy wires. Engineering Structures. 2014 Mar 1;61:166-83.
[12] Dezfuli FH, Alam MS. Hysteresis model of shape memory alloy wire-based laminated rubber bearing under compression and unidirectional shear loadings. Smart Materials and Structures. 2015 May 11;24(6):065022.
[13] Dezfuli FH, Li S, Alam MS, Wang JQ. Effect of constitutive models on the seismic response of an SMA-LRB isolated highway bridge. Engineering Structures. 2017 Oct 1;148:113-25.
[14] Dezfuli FH, Alam MS. Seismic vulnerability assessment of a steel-girder highway bridge equipped with different SMA wire-based smart elastomeric isolators. Smart Materials and Structures. 2016 Jun 24;25(7):075039.
[15] Hosseini R, Rashidi M, Hedayati Dezfuli F, Karbasi Arani K, Samali B. Seismic assessment of a benchmark highway bridge equipped with optimized shape memory alloy wire-based isolators. Applied Sciences. 2019 Dec 23;10(1):141.
[16] Habieb AB, Valente M, Milani G. Effectiveness of different base isolation systems for seismic protection: Numerical insights into an existing masonry bell tower. Soil Dynamics and Earthquake Engineering. 2019 Oct 1;125:105752.
[17] Cancellara D, De Angelis F. A base isolation system for structures subject to extreme seismic events characterized by anomalous values of intensity and frequency content. Composite Structures. 2016 Dec 1;157:285-302.
[18] Latour M, Piluso V, Rizzano G. Experimental analysis on friction materials for supplemental damping devices. Construction and Building Materials. 2014 Aug 29;65:159-76.
[19] Ahmadipour M, Alam MS. Sensitivity analysis on mechanical characteristics of lead-core steel-reinforced elastomeric bearings under cyclic loading. Engineering Structures. 2017 Jun 1;140:39-50.
[20] Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science. 2010 Mar 19;327(5972):1488-90.
[21] Qiu CX, Zhu S. Characterization of cyclic properties of superelastic monocrystalline Cu–Al–Be SMA wires for seismic applications. Construction and building materials. 2014 Dec 15;72:219-30.