شناسایی آسیب در سازه ها به روش زیر فضای تصادفی مبتنی بر داده های مرجع

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه محقق اردبیلی
چکیده
ایجاد آسیب در سازه طی دوران بهره‌برداری همیشه محتمل است ازاین‌رو بحث پایش سلامت سازه­های مهم به‌منظور کنترل و مدیریت بهره­برداری ایمن طی سال­های اخیر موردتوجه قرارگرفته است. فرآیند شناسایی و پایش سیستم­های سازه­ای از طریق روش­های مختلفی امکان پذیر بوده و استخراج مشخصه­های ذاتی سازه­های هدف به ‌منظور تشخیص آسیب­های احتمالی از مبانی روش­های مذکور است. روش زیرفضای تصادفی از جمله روش­های شناسایی است که با استفاده از داده­های ثبت شده از پاسخ سیستم بوسیله نصب حسگر و با فرض وجود نویزهای اندازه­گیری در داده­ها، مشخصه­های سازه را ارائه می­دهد. با توجه به محدودیت در تعداد حسگرهای قابل نصب به منظور پایش سازه­های واقعی، استفاده از روش زیرفضای تصادفی مبتنی بر داده­های مرجع این امکان را فرآهم خواهد آورد که با استفاده از تعداد حسگرهای محدود، سازه­ی مورد بررسی شناسایی شده و در صورت وجود آسیب، محل وقوع آن توسط بهره­گیری از روش­های متداول موجود قابل تشخیص باشد. طی پژوهش حاضر پس از مدل­سازی اجزای محدود و تحلیل دینامیکی چند نمونه سازه­ی هدف با فرض نصب تعداد محدود حسگر، نتایج حاصل از خروجی روش زیرفضای تصادفی مبتنی بر داده­های مرجع مورد بهره­برداری قرار گرفته است. در ادامه با استفاده از تغییرات انرژی کرنشی مودال اعضا و رویکرد احتمالاتی، فرآیند تشخیص آسیب­ در اعضای آسیب‌دیده­ی سازه­ی هدف بکار گرفته شده و کارایی روش پیشنهادی در قالب فرآیند مذکور مورد بحث قرارگرفته است. بر اساس نتایج حاصل شده از خروجی فرآیند پیشنهادی، اعضای آسیب‌دیده با دقت زیادی شناسایی شده و قابل تشخیص خواهند بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Damage Detection of Structures Using Reference-Based Stochastic Subspace Method

نویسندگان English

Soheil sarparast sadat
amin gholizad
Mohaghegh Ardabili University
چکیده English

Damage to the structure during operation has always been possible, and therefore the issue of monitoring the health of important structures in order to control and manage safe operation has received attention in recent years. The process of extracting the parameters involved in identification the inherent characteristics of the target structural systems in order to monitor and detect damages is possible with different methods which have been introduced and investigated under the title of environmental modal analysis, which have been developed both in the time domain and in the frequency domain. Among the time domain methods, we can mention the stochastic subspace identification (SSI) method. The stochastic subspace identification method is one of the Output Only Modal Analysis (OOMA) methods that has been taken into consideration assuming the existence of uncertainty in modeling as well as noise in data observation and measurement, and system parameters are identification by applying statistical relationships to the output data. Due to the high accuracy of the covariance-drived stochastic subspace (SSI-cov) method which performs data monitoring by constructing the covariance function related to the recorded output data, therefore this sub-method has been used. Due to the limitation in the number of sensors that can be installed in real structures, the use of the Reference-based covariance-drived stochastic subspace identification (SSI-cov-ref) method will make it possible to identification the structure under investigation with a limited number of sensors and if there is damage, Its location can be recognized. The efficiency of the reference-based covariance-drived stochastic subspace identification method with a more limited number of sensors can also be presented. In order to damage detecting in the structure, the method of measuring changes in the modal strain energy of the members in healthy and damaged states has been used, and an index called modal strain energy has been defined and presented But in the case of damage in the structure, the undamaged members will also have strain energy due to the strain effect of the damaged members. Therefore, by using the probabilities approach, it will be possible to provide an index of the probability of structural member damage under a specific failure scenario using different information sources based on the mode shapes. In the following, using the genetic algorithm in the form of an optimization problem, the installation location for the available sensors for the target structure is optimized and presented. During the current research, after finite element modeling in MATLAB software and dynamic analysis of several samples of structure with the assumption of installing a limited number of sensors ,and the results obtained from the output of the reference-based covariance-drived stochastic subspace identification method using the changes in the modal strain energy of the members And the Bayesian strategy has been used in the damage detection in the affected members, and the efficiency of the proposed method has been discussed in the framework of the mentioned process. Based on the results obtained from the output of the proposed process, the affected members will be identified and distinguishable.

.

کلیدواژه‌ها English

Damage detection
Finite Element Modeling
Dynamic Analysis
Stochastic Subspace identification method
modal strain energy
[1]- He J, Fu ZF (2001) Modal analysis. 1st edn. Oxford, London.
[2]- W.X. Ren, Z.-H. Zong, Output-only modal parameter identification of civil engineering structures, Structural Engineering and Mechanics, Vol. 17,No. 3-4, pp. 429-444, 2004.
[3]- Tarinejad R, Pourgholi M, Yaghmaei-Sabegh S. System Identification of Arch Dams Using Balanced Stochastic Subspace Identification. Modares Civil Engineering journal 2017; 17 (1) :53-64
[4]- Shahin Lale Arefi, Amin Gholizad and Seyed Mohammad Seyedpoor, A modified index for damage detection of structures using improved reduction system method, Journal of Smart Structures and Systems, Vol. 25, No. 1 (2020) 1-22
[5]- Jyrki Kullaa, Robust damage detection using Bayesian virtual sensors, Mechanical Systems and Signal Processing Volume 135, 1 January 2020, 106384.
[6]- Sasmita Sahu and B.B.Nayak, An adaptive genetic algorithm method for damage detection in structural elements. Materials Today: Proceedings Volume 26, Part 2, 2020, Pages 581-585
[7]- Sarehati Umara, Mohammadreza Vafaeia, Sophia C. Alihb, Sensor clustering-based approach for structural damage identification under ambient vibration, Automation in Construction Volume 121, January 2021, 103433
[8]- Alexander Mendlerab, Michael Döhlerb, Carlos E.Venturaa, A reliability-based approach to determine the minimum detectable damage for statistical damage detection, Mechanical Systems and Signal Processing Volume 154, 1 June 2021, 107561
[9]- D. J. EWINS Modal testing: theory and Practice. Letchworth, Hertfordshire, UK: Research Studies Press. 1984.
[10]- J. N. JUANG Applied system identification. Englewood Cliffs, NJ, USA: Prentice Hall. 1994
[11]- Bart Peeters And Guido De Roeck, Reference-Based Stocastic Subspace Identification For Output-Only Modal Analysis, Mechanical Systems and Signal Processing ,1999. 13(6), 855878
[12]- Frigui, Farouk and Faye, Jean-Pierre and Martin, Carmen and Dalverny, Olivier and Pérès, François and Judenherc, Sébastien An algorithm for damage detection and localization Usibg output-only response for civil engineering structures subjected to seismic excitations. (2017) In: 7th International Conference on Mechanics and Materials in Design, 11 June 2017 - 15 June 2017
[13]- G.H. JAMES, T. G. CARNE and J. P. LAUFFER. The natural excitation technique (NExT) for modal parameter extraction from operating structures. the International Journal of Analytical and Experimental Modal Analysis. 10260277.1995
[14]- L. HERMANS and H. VAN DER AUWERAER Proceedings of NATO/ASI. Sesimbra, Portugal. Modal testing and analysis of structures under operational conditions: industrial applications. 1998
[15]- L. LJUNG. System Identification: theory for the user. Englewood Cliffs, NJ, USA: Prentice- Hall. 1987
[16]- Shi ZY, Law SS, Zhang LM. Structural damage localization from modal strain energy change. J. Sound Vib. 1998;218:825–844.
[17]-Shahin Lale Arefi, Amin Gholizad, Damage Detection of Truss Structures by Reduction of Degrees of Freedom Using the Serep Method. The Baltic Journal of Road and Bredge Engineering 2020/15(1), 2020 Volume 15 Issue 1: 1–25
[18]- Guo HY, Li ZL. Structural damage identification based on Bayesian theory and improved immune genetic algorithm. Expert Syst. Appl. 2012;39:6426–6434.
[19]- Hamed Teimouri, Mohammad Reza Davoodi, Seyedamin Mostafavian, Detecting damage location and severity in a double layer grid using modal strain energy method and data fusion,Journal of Structural and Construction Engineering, Volume 7, Issue 3 - Serial Number 34 September 2020 Pages 35-54. in Persian
[20]- Dan M. Frangopol, Structural Identification and Damage Detection using Genetic Algorithms: Vol. 6, Structures & Infrastructures Series, Series Editor, Netherlands, 2010, 140 pages
[21]- Khajavi M, Gholizad A, Shoaei-parchin M. Optimal Sensor Placement to Identify the Mode Shapes of Reduced Order Structures. MCEJ 2022; 23 (1). in Persian
[22]- Allemang RJ, Brown DL (1982) A Correlation Co-efficient for Modal Vector Analysis. In:Proc of the 1st Int Modal Anal Conf:01–18