[1] Bathurst, R. J., Blatz, J. A., & Burger, M. H. (2003). Performance of instrumented large-scale unreinforced and reinforced embankments loaded by a strip footing to failure. Canadian Geotechnical Journal, 40(6), 1067-1083.
[2] Georgiadis, K. (2010). Undrained bearing capacity of strip footings on slopes. Journal of geotechnical and geoenvironmental engineering, 136(5), 677.
[3] Leshchinsky, B. (2015). Bearing capacity of footings placed adjacent to c′-ϕ′ slopes. Journal of geotechnical and geoenvironmental engineering, 141(6), 04015022.
[4] Keshavarz, A., Beygi, M., & Vali, R. (2019). Undrained seismic bearing capacity of strip footing placed on homogeneous and heterogeneous soil slopes by finite element limit analysis. Computers and Geotechnics, 113, 103094.
[5] Izadi, A., Foroutan Kalourazi, A., & Jamshidi Chenari, R. (2021). Effect of roughness on seismic bearing capacity of shallow foundations near slopes using the lower bound finite element method. International Journal of Geomechanics, 21(3), 06020043.
[6] Yang, S., Leshchinsky, B., Cui, K., Zhang, F., & Gao, Y. (2021). Influence of failure mechanism on seismic bearing capacity factors for shallow foundations near slopes. Géotechnique, 71(7), 594-607.
[7] Christian, J. T. (2004). Geotechnical engineering reliability: How well do we know what we are doing?. Journal of geotechnical and geoenvironmental engineering, 130(10), 985-1003.
[8] Griffiths, D. V., & Fenton, G. A. (Eds.). (2007). Probabilistic methods in geotechnical engineering (Vol. 491). Springer Science & Business Media.
[9] Hamrouni, A., Sbartai, B., & Dias, D. (2018). Probabilistic analysis of ultimate seismic bearing capacity of strip foundations. Journal of Rock Mechanics and Geotechnical Engineering, 10(4), 717-724.
[10] Luo, N., & Bathurst, R. J. (2017). Reliability bearing capacity analysis of footings on cohesive soil slopes using RFEM. Computers and Geotechnics, 89, 203-212.
[11] Halder, K., & Chakraborty, D. (2019). Probabilistic bearing capacity of strip footing on reinforced soil slope. Computers and Geotechnics, 116, 103213.
[12] Halder, K., & Chakraborty, D. (2020). Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope. Geomechanics and Engineering, 23(1), 15-30.
[13] Sloan, S. W. (1988). Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 12(1), 61-77.
[14] Makrodimopoulos, A., & Martin, C. (2006). Lower bound limit analysis of cohesive‐frictional materials using second‐order cone programming. International Journal for Numerical Methods in Engineering, 66(4), 604-634.
[15] Krabbenhøft, K., Lyamin, A. V., & Sloan, S. W. (2007). Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures, 44(5), 1533-1549.
[16] Sloan, S. W. (2013). Geotechnical stability analysis. Géotechnique, 63(7), 531-571.
[17] Tang, C., Phoon, K. K., & Toh, K. C. (2015). Effect of footing width on Nγ and failure envelope of eccentrically and obliquely loaded strip footings on sand. Canadian Geotechnical Journal, 52(6), 694-707.
[18] Ukritchon, B., & Keawsawasvong, S. (2018). Lower bound limit analysis of an anisotropic undrained strength criterion using second‐order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics, 42(8), 1016-1033.
[19] Fathipour, H., Siahmazgi, A. S., Payan, M., & Jamshidi Chenari, R. (2020). Evaluation of the lateral earth pressure in unsaturated soils with finite element limit analysis using second-order cone programming. Computers and Geotechnics, 125, 103587.
[20] Fathipour, H., Siahmazgi, A. S., Payan, M., Veiskarami, M., & Jamshidi Chenari, R. (2021). Limit Analysis of Modified Pseudodynamic Lateral Earth Pressure in Anisotropic Frictional Medium Using Finite-Element and Second-Order Cone Programming. International Journal of Geomechanics, 21(2), 04020258.
[21] Fathipour, H., Payan, M., & Jamshidi Chenari, R. (2021). Limit analysis of lateral earth pressure on geosynthetic-reinforced retaining structures using finite element and second-order cone programming. Computers and Geotechnics, 134, 104119.
[22] Fathipour, H., Payan, M., Jamshidi Chenari, R., & Senetakis, K. (2021). Lower bound analysis of modified pseudo‐dynamic lateral earth pressures for retaining wall‐backfill system with depth‐varying damping using FEM‐Second order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics, 45(16), 2371-2387.
[23] Safardoost Siahmazgi, A., Fathipour, H., Jamshidi Chenari, R., Veiskarami, M., & Payan, M. (2021). Evaluation of the pseudo-dynamic bearing capacity of surface footings on cohesionless soils using finite element lower bound limit analysis. Geomechanics and Geoengineering, 1-13.
[24] Fathipour, H., Payan, M., Jamshidi Chenari, R., & Fatahi, B. (2022). General failure envelope of eccentrically and obliquely loaded strip footings resting on an inherently anisotropic granular medium. Computers and Geotechnics, 146, 104734.
[25] Fathipour, H., Payan, M., Safardoost Siahmazgi, A., Chenari, R. J., & Senetakis, K. (2022). Numerical study on the bearing capacity of strip footing resting on partially saturated soil subjected to combined vertical-horizontal-moment loading. European Journal of Environmental and Civil Engineering, DOI: 10.1080/19648189.2022.2080769.
[26] Payan, M., Fathipour, H., Hosseini, M., Chenari, R. J., & Shiau, J. S. (2022). Lower Bound Finite Element Limit Analysis of Geo-Structures with Non-Associated Flow Rule. Computers and Geotechnics, 147, 104803.
[27] Myers, R. H. & Montgomery, D. C. (2002). Response Surface Methodology: Process and Product Optimization using Designed Experiments, 2nd edn. John Wiley & Sons, New York, NY, USA.