تأثیر استفاده از مصالح سنگی سرباره‌ای در مخلوط‌های دوغاب قیری حاوی رنگدانه‌های اکسید آهن

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده مهندسی عمران، دانشگاه علم‌و‌صنعت ایران، ایران، تهران
2 دانشکده مهندسی عمران، دانشگاه علم‌و‌صنعت ایران، تهران، ایران
3 دانشکده مهندسی عمران، دانشگاه تهران، تهران، ایران
چکیده
یکی از شیوه‌های کارآمد در بحث ایمنی ترافیک و نگهداری پیشگیرانه رویه‌های آسفالتی، استفاده به‌موقع از اسلاری‌سیل رنگی است. این مطالعه باهدف امکان‌سنجی و تأثیر استفاده از سرباره فولاد-قوس الکتریکی جایگزین مصالح سنگی طبیعی در طرح اختلاط اسلاری‌سیل جهت سنجش عملکرد آن انجام شده است. در این خصوص، در مرحله اول ویژگی‌های مصالح سنگی و سرباره فولاد بررسی گردید. در مرحله بعد جهت تحلیل عملکرد مخلوط‌های اسلاری‌سیل، از 5 ترکیب متفاوت شامل 0، 10، 20، 30 و 40 درصد سرباره فولاد بر اساس وزن کل سنگدانه، استفاده گردید. ارزیابی و مقایسه نمونه‌های آسفالتی با آزمایش‌های چسبندگی مرطوب (در زمان‌های 30 و 60 دقیقه)، سایش در شرایط مرطوب (در مدت‌زمان یک ساعت) و چرخ بارگذاری شده-چسبندگی ماسه و چرخ بارگذاری شده-میزان جابه‌جایی مطابق با آیین‌نامه ASTM D3910 صورت گرفت. نتایج نشان داد که نمونه‌های حاوی سرباره فولاد، سبب ارتقاء عملکرد اسلاری‌سیل می‌شوند. همچنین در میان نمونه‌های آسفالتی، مخلوط حاوی 40 درصد سرباره فولاد دارای مناسب‌ترین عملکرد بوده به‌طوری که نسبت به نمونه اصلاح نشده (شاهد) سبب افزایش چسبندگی در مدت‌زمان 30 و 60 دقیقه به ترتیب به میزان 8/27 و 3/37 درصد و کاهش حساسیت رطوبتی مخلوط به میزان 7/47 درصد و کاهش میزان جابه‌جایی عمودی در برابر بارگذاری ترافیکی به میزان 8/50 درصد گردید. مخلوط حاوی 40 درصد سرباره فولاد در مقایسه با نمونه شاهد دارای 9/1 درصد قیر امولسیون بیشتر جهت رسیدن به چسبندگی مناسب در زمان مشخص است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Using Steel Slag Aggregate in Slurry Seal Mixtures Containing Iron Oxide Pigments

نویسندگان English

H. Ziari 1
M. Zalnezhad 2
M. Ziari 3
1 Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
2 Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
3 Department of Civil Engineering, University of Tehran, Tehran, Iran
چکیده English

An efficient approach to road safety coupled with preventive maintenance of asphalt pavements is the application of colored slurry seal, as it improves the road visibility while enhancing the aesthetic aspects of the urban space. Around the globe, application of colored surface treatments on roads has witnessed a growth in recent years, especially in urban areas. This study aims at investigating the feasibility and effectiveness of using electric-arc furnace steel slag as an alternative to natural aggregates in the colored slurry seal mixture design followed by a performance assessment of the resultant mixture. For this purpose, first, characteristics of the aggregate and steel slag were investigated. Next, performance of the designed slurry seal mixture was assessed by testing five different mixtures containing the slag at 0, 10, 20, 30 and 40 wt.%. Evaluation and comparison of the asphalt specimens were performed by conducting 30- and 60-min wet cohesion tests, 60-min wet track abrasion test, loaded wheel-sand adhesion test, and loaded wheel-displacement test according to ASTM D3910. Based on the XRF results, the considered steel slag powder contained a significant amount of calcium oxide (~ 57% of natural aggregate). The high CaO/SiO2 ratio for the steel slag indicates its alkalinity, which suggests its improved adhesion to bitumen thanks to its rather acidic nature. According to FESEM results, the steel slag material was found to be composed of particles of angular geometry with a rougher surface and higher porosity than natural aggregates, further indicating better slag-bitumen adhesion. Performance assessments indicated superior performance of the steel slag-containing specimens of colored slurry seal. Among the studied mixtures, the one with 40 wt.% steel slag exhibited the best performance, as shown by 27.8 and 37.3% increase in the mixture cohesion upon 30- and 60-min wet cohesion tests, respectively, as compared to the control specimen. Furthermore, 47.7% lower moisture sensitivity and 50.8% and 40% smaller vertical and lateral displacements, respectively, were observed for the slag-containing mixture. The bleeding potential of the mixtures decreased with increasing the steel slag dosage from 0 to 40 wt.%, so that the mixture containing steel slag at 40 wt.% exhibited 23.7% lower bleeding potential. Trying to optimize the asphalt emulsion dosage, it was figured out that the optimal content of asphalt emulsion increases with the added content of steel slag to the mixture. Accordingly, the mixture containing steel slag at 40 wt.% required 1.9% more asphalt emulsion to achieve a given cohesion level within a certain time. Based on the results of this research, in order to improve performance characteristics of colored slurry seal mixtures while observing environmental obligations, it is recommended to use steel slag as an alternative to natural aggregates in this type of surface treatment. Therefore, according to the environmental issues and the limitations of natural resources, it is recommended that steel slag be replaced by natural aggregates up to 40% in the colored slurry mixture. By replacing steel slag, proper adhesion and cohesion between asphalt mixture materials is achieved and its resistance to moisture sensitivity, traffic loading and bleeding is improved.

کلیدواژه‌ها English

Loaded Wheel test
Colored slurry seal
Steel slag
Cohesion
Moisture Susceptibility
Pattanaik ML, Choudhary R, Kumar B, Kumar A. Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries. Road Materials and Pavement Design. 2021;22(2):268-92.
Chen S-H, Lin D-F, Luo H-L, Lin Z-Y. Application of reclaimed basic oxygen furnace slag asphalt pavement in road base aggregate. Construction and Building Materials. 2017;157:647-53.
Dulaimi A, Shanbara HK, Al-Rifaie A. The mechanical evaluation of cold asphalt emulsion mixtures using a new cementitious material comprising ground-granulated blast-furnace slag and a calcium carbide residue. Construction and Building Materials. 2020;250:118808.
Puligilla S, Mondal P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cement and concrete Research. 2013;43:70-80.
Jalalian Khoshnood A, Kamboozia N, Ziari H, Zalnezhad M. Evaluation of performance characteristics of polymer-modified slurry seal (PMSS) by replacing filler with ceramic waste powder. Road Materials and Pavement Design. 2022:1-18.
Autelitano F, Giuliani F. Daytime and nighttime color appearance of pigmented asphalt surface treatments. Construction and Building Materials. 2019;207:98-107.
Takamura K, James A. 13 - Paving with asphalt emulsions. In: Huang S-C, Di Benedetto H, editors. Advances in Asphalt Materials. Oxford: Woodhead Publishing; 2015. p. 393-426.
Dong Q, Chen X, Huang B, Gu X. Analysis of the Influence of Materials and Construction Practices on Slurry Seal Performance Using LTPP Data. Journal of Transportation Engineering, Part B: Pavements. 2018;144(4):04018046.
Choudhary J, Kumar B, Gupta A. Evaluation of engineering, economic and environmental suitability of waste filler incorporated asphalt mixes and pavements. Road Materials and Pavement Design. 2021;22(sup1):S624-S40.
Keymanesh MR, Ziari H, Zalnezhad H, Zalnezhad M. Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler. Construction and Building Materials. 2021;269:121336.
Robinson Jr GR, Menzie WD, Hyun H. Recycling of construction debris as aggregate in the Mid-Atlantic Region, USA. Resources, Conservation and Recycling. 2004;42(3):275-94.
Choudhary J, Kumar B, Gupta A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Construction and Building Materials. 2020;234:117271.
Liu J, Wang W, Wang Y, Zhou X, Wang S, Liu Q, et al. Towards the sustainable utilization of steel slag in asphalt pavements: A case study of moisture resistance and life cycle assessment. Case Studies in Construction Materials. 2023;18:e01722.
Wang W, Shen A. Moisture Damage Characterization of Rubber-Modified Asphalt Mixture Containing Waste Steel Slag under Multiple Freeze–Thaw Cycles. Journal of Materials in Civil Engineering. 2023;35(2):04022409.
Pazzini M, Tarsi G, Tataranni P, Lantieri C, Dondi G. Mechanical Characterization of Thin Asphalt Overlay Mixtures with 100% Recycled Aggregates. Materials [Internet]. 2023; 16(1).
Pathak S, Choudhary R, Kumar A, Kumar B. Mechanical Properties of Open-Graded Asphalt Friction Course Mixtures with Basic Oxygen Furnace Steel Slag as Coarse Aggregates. Journal of Materials in Civil Engineering. 2023;35(4):04023036.
Goli A. The study of the feasibility of using recycled steel slag aggregate in hot mix asphalt. Case Studies in Construction Materials. 2022;16:e00861.
Zhao X, Sheng Y, Lv H, Jia H, Liu Q, Ji X, et al. Laboratory investigation on road performances of asphalt mixtures using steel slag and granite as aggregate. Construction and Building Materials. 2022;315:125655.
Masoudi S, Abtahi SM, Goli A. Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging. Construction and Building Materials. 2017;135:260-6.
Ziari H, Mahdizadeh MJ, Zalnezhad M. Experimental Performance Evaluation of Microsurfacing Surface Treatment Containing Polypropylene Fibers. Quarterly Journal of Transportation Engineering. 2021:-.
Wang A, Shen S, Li X, Song B. Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation. Construction and Building Materials. 2019;201:303-13.
Keymanesh MR, Ziari H, Zalnezhad H, Zalnezhad M. Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler. Construction and Building Materials. 2020;269:121336.
Zalnezhad M, Hesami E. Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture. Journal of Traffic and Transportation Engineering (English Edition). 2020;7(2):215-26.
ISSA. Trial mix procedure for slurry seal design. Technical Bulletin 113: International Slurry Surfacing Association; 2017.
Esfahani MA, Khatayi A. Effect of type and quantity of emulsifier in bitumen polymer emulsion on microsurfacing performance. International Journal of Pavement Engineering. 2020:1-15.
ISSA. Test method to classify emulsified asphalt/aggregate mixture systems by modified cohesion tester measurement of set and cure characteristics. Technical Bulletin: International Slurry Surfacing Association; 2017.
ISSA. Test Method for Wet Track Abrasion of Slurry Surfacing Systems. Technical Bulletin: International Slurry Surfacing Association; 2017.
ISSA. Test Method for Measurement of Excess Asphalt in Bituminous Mixtures by Use of a Loaded Wheel Tester and Sand Adhesion. Technical Bulletin: International slurry surfacing association; 2017.
ISSA. Test method for measurement of stability and resistance to compaction, vertical and lateral displacement of multilayered fine aggregate cold mixes. Technical Bulletin: International Slurry Surfacing Association; 2017.
Goli H, Latifi M, Sadeghian M. Moisture characteristics of warm mix asphalt containing reclaimed asphalt pavement (RAP) or steel slag. Materials and Structures. 2022;55(2):53.
Alinezhad M, Sahaf A. Investigation of the fatigue characteristics of warm stone matrix asphalt (WSMA) containing electric arc furnace (EAF) steel slag as coarse aggregate and Sasobit as warm mix additive. Case Studies in Construction Materials. 2019;11:e00265.
Pathak S, Choudhary R, Kumar A. Investigation of Moisture Damage in Open Graded Asphalt Friction Course Mixtures with Basic Oxygen Furnace Steel Slag as Coarse Aggregate under Acidic and Neutral pH Environments. Transportation Research Record. 2020;2674(8):887-901.
Kumar H, Varma S. A review on utilization of steel slag in hot mix asphalt. International Journal of Pavement Research and Technology. 2021;14(2):232-42.
Rondón-Quintana HA, Ruge-Cárdenas JC, Patiño-Sánchez DF, Vacca-Gamez HA, Reyes-Lizcano FA, Muniz de Farias M. Blast furnace slag as a substitute for the fine fraction of aggregates in an asphalt mixture. Journal of Materials in Civil Engineering. 2018;30(10):04018244.
Chen M, Lin J, Wu S. Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and building materials. 2011;25(10):3909-14.
Pattanaik ML, Choudhary R, Kumar B, Kumar A. Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries. Road Materials and Pavement Design. 2021;22(2):268-92.
Chen S-H, Lin D-F, Luo H-L, Lin Z-Y. Application of reclaimed basic oxygen furnace slag asphalt pavement in road base aggregate. Construction and Building Materials. 2017;157:647-53.
Dulaimi A, Shanbara HK, Al-Rifaie A. The mechanical evaluation of cold asphalt emulsion mixtures using a new cementitious material comprising ground-granulated blast-furnace slag and a calcium carbide residue. Construction and Building Materials. 2020;250:118808.
Puligilla S, Mondal P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cement and concrete Research. 2013;43:70-80.
Jalalian Khoshnood A, Kamboozia N, Ziari H, Zalnezhad M. Evaluation of performance characteristics of polymer-modified slurry seal (PMSS) by replacing filler with ceramic waste powder. Road Materials and Pavement Design. 2022:1-18.
Autelitano F, Giuliani F. Daytime and nighttime color appearance of pigmented asphalt surface treatments. Construction and Building Materials. 2019;207:98-107.
Takamura K, James A. 13 - Paving with asphalt emulsions. In: Huang S-C, Di Benedetto H, editors. Advances in Asphalt Materials. Oxford: Woodhead Publishing; 2015. p. 393-426.
Dong Q, Chen X, Huang B, Gu X. Analysis of the Influence of Materials and Construction Practices on Slurry Seal Performance Using LTPP Data. Journal of Transportation Engineering, Part B: Pavements. 2018;144(4):04018046.
Choudhary J, Kumar B, Gupta A. Evaluation of engineering, economic and environmental suitability of waste filler incorporated asphalt mixes and pavements. Road Materials and Pavement Design. 2021;22(sup1):S624-S40.
Keymanesh MR, Ziari H, Zalnezhad H, Zalnezhad M. Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler. Construction and Building Materials. 2021;269:121336.
Robinson Jr GR, Menzie WD, Hyun H. Recycling of construction debris as aggregate in the Mid-Atlantic Region, USA. Resources, Conservation and Recycling. 2004;42(3):275-94.
Choudhary J, Kumar B, Gupta A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Construction and Building Materials. 2020;234:117271.
Liu J, Wang W, Wang Y, Zhou X, Wang S, Liu Q, et al. Towards the sustainable utilization of steel slag in asphalt pavements: A case study of moisture resistance and life cycle assessment. Case Studies in Construction Materials. 2023;18:e01722.
Wang W, Shen A. Moisture Damage Characterization of Rubber-Modified Asphalt Mixture Containing Waste Steel Slag under Multiple Freeze–Thaw Cycles. Journal of Materials in Civil Engineering. 2023;35(2):04022409.
Pazzini M, Tarsi G, Tataranni P, Lantieri C, Dondi G. Mechanical Characterization of Thin Asphalt Overlay Mixtures with 100% Recycled Aggregates. Materials [Internet]. 2023; 16(1).
Pathak S, Choudhary R, Kumar A, Kumar B. Mechanical Properties of Open-Graded Asphalt Friction Course Mixtures with Basic Oxygen Furnace Steel Slag as Coarse Aggregates. Journal of Materials in Civil Engineering. 2023;35(4):04023036.
Goli A. The study of the feasibility of using recycled steel slag aggregate in hot mix asphalt. Case Studies in Construction Materials. 2022;16:e00861.
Zhao X, Sheng Y, Lv H, Jia H, Liu Q, Ji X, et al. Laboratory investigation on road performances of asphalt mixtures using steel slag and granite as aggregate. Construction and Building Materials. 2022;315:125655.
Masoudi S, Abtahi SM, Goli A. Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging. Construction and Building Materials. 2017;135:260-6.
Ziari H, Mahdizadeh MJ, Zalnezhad M. Experimental Performance Evaluation of Microsurfacing Surface Treatment Containing Polypropylene Fibers. Quarterly Journal of Transportation Engineering. 2021:-.
Wang A, Shen S, Li X, Song B. Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation. Construction and Building Materials. 2019;201:303-13.
Keymanesh MR, Ziari H, Zalnezhad H, Zalnezhad M. Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler. Construction and Building Materials. 2020;269:121336.
Zalnezhad M, Hesami E. Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture. Journal of Traffic and Transportation Engineering (English Edition). 2020;7(2):215-26.
ISSA. Trial mix procedure for slurry seal design. Technical Bulletin 113: International Slurry Surfacing Association; 2017.
Esfahani MA, Khatayi A. Effect of type and quantity of emulsifier in bitumen polymer emulsion on microsurfacing performance. International Journal of Pavement Engineering. 2020:1-15.
ISSA. Test method to classify emulsified asphalt/aggregate mixture systems by modified cohesion tester measurement of set and cure characteristics. Technical Bulletin: International Slurry Surfacing Association; 2017.
ISSA. Test Method for Wet Track Abrasion of Slurry Surfacing Systems. Technical Bulletin: International Slurry Surfacing Association; 2017.
ISSA. Test Method for Measurement of Excess Asphalt in Bituminous Mixtures by Use of a Loaded Wheel Tester and Sand Adhesion. Technical Bulletin: International slurry surfacing association; 2017.
ISSA. Test method for measurement of stability and resistance to compaction, vertical and lateral displacement of multilayered fine aggregate cold mixes. Technical Bulletin: International Slurry Surfacing Association; 2017.
Goli H, Latifi M, Sadeghian M. Moisture characteristics of warm mix asphalt containing reclaimed asphalt pavement (RAP) or steel slag. Materials and Structures. 2022;55(2):53.
Alinezhad M, Sahaf A. Investigation of the fatigue characteristics of warm stone matrix asphalt (WSMA) containing electric arc furnace (EAF) steel slag as coarse aggregate and Sasobit as warm mix additive. Case Studies in Construction Materials. 2019;11:e00265.
Pathak S, Choudhary R, Kumar A. Investigation of Moisture Damage in Open Graded Asphalt Friction Course Mixtures with Basic Oxygen Furnace Steel Slag as Coarse Aggregate under Acidic and Neutral pH Environments. Transportation Research Record. 2020;2674(8):887-901.
Kumar H, Varma S. A review on utilization of steel slag in hot mix asphalt. International Journal of Pavement Research and Technology. 2021;14(2):232-42.
Rondón-Quintana HA, Ruge-Cárdenas JC, Patiño-Sánchez DF, Vacca-Gamez HA, Reyes-Lizcano FA, Muniz de Farias M. Blast furnace slag as a substitute for the fine fraction of aggregates in an asphalt mixture. Journal of Materials in Civil Engineering. 2018;30(10):04018244.
Chen M, Lin J, Wu S. Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and building materials. 2011;25(10):3909-14.
Mogawer WS, Stuart KD. Effects of mineral fillers on properties of stone matrix asphalt mixtures. Transportation Research Record. 1996;1530(1):86-94.
Wang H, Al-Qadi IL, Faheem AF, Bahia HU, Yang S-H, Reinke GH. Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential. Transportation Research Record. 2011;2208(1):33-9.
Melotti R, Santagata E, Bassani M, Salvo M, Rizzo S. A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures. Waste management. 2013;33(9):1906-17.
Rondón-Quintana HA, Ruge-Cárdenas JC, Farias MMd. Behavior of hot-mix asphalt containing blast furnace slag as aggregate: Evaluation by mass and volume substitution. Journal of Materials in Civil Engineering. 2019;31(2):04018364.
Pasetto M, Baldo N. Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Construction and Building Materials. 2011;25(8):3458-68.