بررسی اثر محصورشدگی بر عملکرد لرزه‌ای سازه‌های با سیستم باربر قاب‌ خمشی بتن مسلح دارای نامنظمی در ارتفاع

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 کارشناسی ارشد، گروه مهندسی عمران، دانشگاه رازی، کرمانشاه
2 دانشیار، گروه مهندسی عمران، دانشگاه رازی، کرمانشاه
3 استادیار، گروه مهندسی عمران، دانشگاه صنعتی کرمانشاه
چکیده
احاطه کردن هسته مرکزی یک المان بتنی از طریق یک عامل درونی و یا بیرونی مانند آرماتورهای عرضی (خاموت) در داخل بتن، الیاف کربنی و پلیمری دورپیچ خارجی و ورقه‌های فولادی موجب محصورشدگی بتن می‌شود. محصورشدگی معمولا موجب افزایش مقاومت و شکل­پذیری بتن شده و در پی آن، با بهبود رفتار المان‌ها موجب ارتفا عملکرد کلی سازه خواهد شد. امروزه تمایل به ساخت سازه‌های نامنظم روبه افزایش است و وجود نامنظمی در سازه همواره یکی از مشکلات پیش روی مهندسین بوده است. در این تحقیق اثر محصورشدگی بر عملکرد لرزه­ای (خسارت و ضریب رفتار) قاب‌های خمشی بتن مسلح دارای نامنظمی در ارتفاع بررسی شده است. بدین منظور، تعداد 31 قاب نامنظم در ارتفاع در 4 گروه 3، 6، 9 و 12 طبقه، دسته‌بندی شده و به وسیله‌ی تحلیل استاتیکی غیرخطی (پوش­آور) یک بار در حالت محصورشده و بار دیگر در حالت محصور نشده مورد بررسی قرار گرفتند. نتایج حاکی از آن است که محصور­شدگی می‌تواند سبب بهبود عملکرد لرزه‌ای و کاهش میزان خسارت وارد بر سازه گردد. مقایسه ضرایب رفتار به دست آمده در این تحقیق و ضریب رفتار پیشنهادی آئین‌نامه 2800 نشان می‌دهد که ضریب رفتار پیشنهادی آئین‌نامه در سازه‌های کوتاه مرتبه، تقریباً منطقی و محافظه کارانه می‌باشد اما با افزایش ارتفاع سازه ضریب رفتار پیشنهادی آیین‌نامه 2800، تأمین نشده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Influence of Confinement Action on the Seismic Performance of the Moment-resisting Reinforced Concrete Frames With Vertical Irregularity

نویسندگان English

R. Yaghuti Yangije 1
R. aghayari 2
M. Izadpanah 3
1 M.Sc., Department of Civil Engineering, Razi University, Kermanshah, Iran
2 Assossiate professor, Department of Civil Engineering, Razi University, Kermanshah, Iran.
3 Assistant professor, Department of Civil Engineering, Kermanshah University of Technology, Kermanshah, Iran
چکیده English

Surrounding the central core of a concrete component by means of an internal or external factor such as transverse reinforcements, carbon and polymer fibers and steel sheets causes confinement for the concrete. Confining generally improves the strength and ductility of concrete components. As a result of boosting the local performance of elements, the overall performance of structure is made progress. Recently, tending to build irregular structures has been increasing. The presence of irregularity in the structure has always been one of the challenges faced by engineers. In this investigation, the influence of confinement phenomenon on the seismic performance (damage level and behavior factor) of the moment resisting reinforced concrete frames with vertical irregularity is assessed. To do so, 31 moment resisting frames with vertical irregularity are categorized in four classes including 3-, 6-, 9- and 12-story and the roof displacement-base shear curves of them are acquired using pushover analysis. The capacity curve of each frame is achieved in two states including neglecting the confinement effect and considering it. The outcomes indicate that not only can confining improve the seismic performance of structures but also it can decrease the imposed damage of structures. In other words, comparing the capacity curves of each frame with/without confining effect shows that taking the confinement effect leads to improving the secant stiffness and strength of the frame. Furthermore, due to confinement effect, lateral load carrying capacities of the frames are boosted and the considered damage levels are achieved in higher base shear and roof displacements in comparison with the state that confinement is not considered. The observed values of damage levels indicate that the influence of confinement for higher frames is more significant and the maximum base shears for the frames with the confining action is around 3-19% higher than those of the frames without confinement effect. For 3-story frames, considering confinement effect leads to improving 3.9, 3.6 and 2.9% in damage levels of DL, SD, and NC. For 6-story frames these values are 6.9, 9.5, and 6.8% respectively. Taking confinement effect results in improving 18.25, 11.8, and 14.6% in damage levels of DL, SD, and NC and 14.3, 14.2, and 13.3% improvement for 12-story frames. Comparing the behavior factors in the two states demonstrates that considering confining effect improves the mean values of behavior factors around 10.4%. In addition, the observed values of behavior factors show that the differences between the amounts of behavior factors (with/without confinement effect) for the frames with more stories are higher. It is manifested that type of irregularity plays significant role on the seismic behavior of the moment-resisting reinforced concrete frames. Comparing the analytical behavior factor obtained in the current study with the prescribed value of behavior factor in Iranian seismic code shows that although the proposed value of Iranian seismic code is conservative for low-rise frames, this value is not met for high-rise frames.

کلیدواژه‌ها English

Confinement effect
Damage
behavior factor
pushover analysis
vertical irregularity
[1] Whitman, R.V. (1972). Seismic design decision analysis, report no. 10, methodology and pilot application Massachusetts institute of technology, Cambridge.
[2] Anagnos, T., Rojahn, C., and Kiremidjiam, A. (1995). ATC joint study on fragility of Building, NCEER-95-0003, applied technology council, CA.
[3] Shinozuka, M. (1998) Statistical analysis of bridge fragility curve, Proceeding of the Workshop on Effective Systems for Bridge, New York, NY.
[4] Rwey-Hua, Ch. (March 2001). Preliminary study on the fragility curves for steel structures in Taipei. Earthquake Engineering and Engineering Seismology, 3(1), p. 35-42-
[5] Humar, J. L., & Wright, E. W. (1977). Earthquake response of steel‐framed ehavior y buildings with set‐backs. Earthquake Engineering & Structural Dynamics, 5(1), 15-39.
[6] Moehle, J. P. (1984). Seismic response of vertically irregular structures. Journal of Structural Engineering, 110(9), 2002-2014.
[7] Aranda, G. R. (1984, August). Ductility demands for R/C frames irregular in elevation. In Proceedings of the eighth world conference on earthquake engineering, San Francisco, USA (Vol. 4, pp. 559-566).
[8] Wood, S. L. (1992). Seismic response of R/C frames with irregular profiles. Journal of Structural Engineering, 118(2), 545-566
[9] Salimbahrami SR, Gholhaki M. (2019). Effects of higher modes and degrees of freedom (DOF) on strength reduction factor in reinforced concrete frames equipped with steel plate shear wall. InStructures 2019 Jun 1 (Vol. 19, pp. 234-247).
Elsevier.
[10] Habibi A, Izadpanah M, Fam MG. (2021). An approximate method for determining the behavior factor of RCMRFs with vertical irregularity. Computers and Concrete. 2021;28(3):243-58..
[11] Güner T, Topkaya C. (2020). Performance comparison of BRBFs designed using different response modification factors. Engineering Structures. 2020 Dec 15;225:111281.
[12] Mohsenian V, Gharaei-Moghaddam N, Hajirasouliha I. (2020). Reliability analysis and multi-level response modification factors for buckling restrained braced frames. Journal of Constructional Steel Research. 1; 171: 106137
[13] Macedo L, Silva A, Castro JM. (2019). A more rational selection of the behaviour factor for seismic design according to Eurocode 8. Engineering Structures. 2019 Jun 1;188:69-86.
[14] Habibi, A., Vahed, M., & Asadi, K. (2018). Evaluation of Seismic performance of RC setback frames. Structural Engineering and Mechanics, 66(5), 609-619.
[15] Basu, D., & Gopalakrishnan, N. (2008). Analysis for preliminary design of a class of torsionally coupled buildings with horizontal setbacks. Engineering Structures, 30(5), 1272-1291.
[16] Humar, J.L. and Wright, E.W. (1977). Earthquake Response of SteelFramed Multistorey Buildingswith Set-Backs, Earthquake Engineering & Structural Dynamics, Vol. 5, No. 1, pp. 15-39.
[17] Wong, C.M. and Tso, W.K. (1994). Seismic Loading for Buildings with Setbacks, Canadian Journal of Civil Engineering, Vol. 21, No. 5, pp. 863-871
[18] Athanassiadou,C.J. (2008) Seismic performance of R/C plane frames irregular in elevation. Department of Civil Engineering, Aristotle University of Thessaloniki, Greece. Engineering Structures 30 (2008) 1250–1261.
[19] Fragiadakis, M., Vamvatsikos, D. and Papadrakakis, M. (2006). Evaluation of the Influence of Vertical Irregularities on the Seismic Performance of a NineStorey Steel Frame, EarthquakeEngineering & Structural Dynamics, Vol. 35, No. 12, pp. 1489-1509.
[20] Tremblay, R., & Poncet, L. (2005). Seismic performance of concentrically braced steel frames in multistory buildings with mass irregularity. Journal of Structural Engineering, 131(9), 1363-1375.
[21] Le-Trung, K, et al. (2012). Evaluation of seismic ehavior of steel special moment frame buildings with vertical irregularities, Struct. Design Tall Spec. Build. 21, 215-232.
[22] Mander, J.B., Priestley, M.J. and Park, R., (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.
[23] SeismoStruct (2016)– A computer program for static and dynamic nonlinear analysis of framed structures,” available from http://www.seismosoft.com.
[24] Sheikh, S.A. and Uzumeri, S.M., (1982). Analytical model for concrete confinement in tied columns. Journal of the Structural Division, 108(12), pp.2703- 2722.
[25] Ministry of Housing and Urban Development, Iranian national building code (Part 9). Tehran, Iran, 2013.
[26] BHRC, Iranian Code of Practice for Seismic Resistant Design of Buildings: Standard No. 2800, 4th Edition, Building and Housing Research Center, 2015.
[27] Federal Emergency Management Agency. (2005). Improvement of nonlinear static seismic analysis procedures. FEMA 440, prepared by Applied Technology Council (ATC-55 Project).
[28] Newmark NM, Hall WJ. (1982). “Earthquake spectra and design. EERI Monograph Series”. Earthquake Engineering Research Institute, Oakland.
[29] Habibi, A., Saffari, H., & Izadpanah, M. (2019). Optimal lateral load pattern for pushover analysis of building structures. Steel Compos. Struct, 32(1), 67-77.
[30] Habibi, A., Izadpanah, M., & Namdar, Y. (2022). A new modal lateral load pattern for improving pushover analysis to estimate nonlinear responses of structures. Australian Journal of Structural Engineering, 1-14.
[31] R. Yaghuti Yangije, Evaluation of the confinement action on the seismic performance of moment resisting reinforced conrete frames with vertical irregularity. Razi University, Kermanshah, Iran, (2020) (in Persian), .
[32] Karavasilis, T.L., Bazeos, N. and Beskos, D.E., 2008. Seismic response of plane steel MRF with setbacks: estimation of inelastic deformation demands. Journal of Constructional Steel Research, 64(6), pp.644-654.