1. Hamada M.&O’Rourke T. 1992 Case studies of liquefaction and lifeline performance during past earthquakes. Volume 1, Japanese Case Studies. Technical Rep. NCEER-92. 1: p. 1-28.
2. Bray J., Cubrinovski M., Zupan J.&Taylor M. 2014 Liquefaction effects on buildings in the central business district of Christchurch. Earthquake Spectra. 30(1): p. 85-109.
3. Cubrinovski M., Winkley A., Haskell J., Palermo A., Wotherspoon L., Robinson K., et al.Hughes M. 2014 Spreading-induced damage to short-span bridges in Christchurch, New Zealand. Earthquake Spectra. 30(1): p. 57-83.
4. Cubrinovski M.&Ishihara K. 2004 Simplified method for analysis of piles undergoing lateral spreading in liquefied soils. Soils and foundations. 44(5): p. 119-133.
5. Priebe H.-J. The prevention of liquefaction by vibro replacement. in International conference on earthquake resistant construction and design. 1991.
6. Ashford S. A., Rollins K. M., Case Bradford V S., Weaver T. J.&Baez J. I. 2000 Liquefaction mitigation using stone columns around deep foundations: Full-scale test results. Transportation research record. 1736(1): p. 110-118.
7. Adalier K., Elgamal A., Meneses J.&Baez J. 2003 Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering. 23(7): p. 571-584.
8. Lu J., Peng J., Elgamal A., Yang Z.&Law K. H. 2004 Parallel finite element modeling of earthquake ground response and liquefaction. Earthquake Engineering and Engineering Vibration. 3(1): p. 23-37.
9. Elgamal A., Lu J.&Forcellini D. 2009 Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation. Journal of geotechnical and geoenvironmental engineering. 135(11): p. 1672-1682.
10. Rayamajhi D. 2014 Shear reinforcement effects of discrete columns in liquefiable soils.
11. Rayamajhi D., Ashford S. A., Boulanger R. W.&Elgamal A. 2016 (a) Dense granular columns in liquefiable ground. I: shear reinforcement and cyclic stress ratio reduction. Journal of Geotechnical and Geoenvironmental Engineering. 142(7): p. 04016023.
12. Rayamajhi D., Boulanger R. W., Ashford S. A.&Elgamal A. 2016 (b) Dense granular columns in liquefiable ground. II: Effects on deformations. Journal of Geotechnical and Geoenvironmental Engineering. 142(7): p. 04016024.
13. Ben Salem Z., Frikha W.&Bouassida M. 2016 Effect of granular-column installation on excess pore pressure variation during soil liquefaction. International Journal of Geomechanics. 16(2): p. 04015046.
14. Tang L., Zhang X.&Ling X. 2016 Numerical simulation of centrifuge experiments on liquefaction mitigation of silty soils using stone columns. KSCE Journal of Civil Engineering. 20(2): p. 631-638.
15. urali A., Godson M., Shanmugam G. K.&Subramani N. 2022 Applicability Analysis of Stone Column Against Liquefaction Under Repeated Dynamic Events, in Ground Improvement and Reinforced Soil Structures. Springer. p. 305-315.
16. Kumar R.&Takahashi A. 2022 Reliability assessment of the performance of granular column in the nonuniform liquefiable ground to mitigate the liquefaction-induced ground deformation. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 16(2): p. 376-395.
17. Chafale A.&Annam M. K. 2022 A Review on Ground Improvement with Surcharge in Addressing Liquefaction Mitigation. Dynamics of Soil and Modelling of Geotechnical Problems: p. 367-375.
18. Zhou Y.-G., Liu K., Sun Z.-B.&Chen Y.-M. 2021 Liquefaction mitigation mechanisms of stone column-improved ground by dynamic centrifuge model tests. Soil Dynamics and Earthquake Engineering. 150: p. 106946.
19. Carlos Tiznado J., Dashti S.&Ledezma C. 2021 Probabilistic predictive model for liquefaction triggering in layered sites improved with dense granular columns. Journal of Geotechnical and Geoenvironmental Engineering. 147(10): p. 04021100.
20. Rashma R., Jayalekshmi B.&Shivashankar R. Seismic performance of pervious concrete column improved ground in mitigating liquefaction. in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing.
21. Tang L., Liu S., Ling X., Wan Y., Li X., Cong S.&Su L. 2021 Seismic Soil Liquefaction Mitigation Using Stone Columns for Pile-supported Wharves. Journal of Earthquake Engineering: p. 1-28.
22. Meite R., Wotherspoon L.&Green R. 2022 Influence of extent of remedial ground densification on seismic site effects via 2-D site response analyses. Soil Dynamics and Earthquake Engineering. 152: p. 107041.
23. Seed H. B.&Booker J. R. 1977 Stabilization of potentially liquefiable sand deposits using gravel drains. Journal of the geotechnical engineering division. 103(7): p. 757-768.
24. Sasaki Y.&Taniguchi E. 1982 Shaking table tests on gravel drains to prevent liquefaction of sand deposits. Soils and Foundations. 22(3): p. 1-14.
25. Brennan A.&Madabhushi S. Physical and numerical modelling of drainage in liquefied soils. in Fourth International Conference on Seismology and Earthquake Engineering, Tehran, Iran. 2003.
26. Asgari A., Oliaei M.&Bagheri M. 2013 Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques. Soil Dynamics and Earthquake Engineering. 51: p. 77-96.
27. Forcellini D. 2020 Soil-structure interaction analyses of shallow-founded structures on a potential-liquefiable soil deposit. Soil Dynamics and Earthquake Engineering. 133: p. 106108.
28. Karimi Z.&Dashti S. 2016 Numerical and centrifuge modeling of seismic soil–foundation–structure interaction on liquefiable ground. Journal of Geotechnical and Geoenvironmental Engineering. 142(1): p. 04015061.
29. McKenna F., Mazzoni S.&Fenves G. 2011 Open system for earthquake engineering simulation (OpenSees) software version 2.2. 0. University of California, Berkeley, CA. Available from http://opensees.berkeley.edu.
30. McKenna F.&Fenves G. L. 2008 Using the OpenSees interpreter on parallel computers. Network for earthquake engineering simulations.
31. Yang Z., Lu J.&Elgamal A. 2008 OpenSees soil models and solid-fluid fully coupled elements. User's Manual. Ver. 1: p. 27.
32. Yang Z., Elgamal A.&Parra E. 2003 Computational model for cyclic mobility and associated shear deformation. Journal of Geotechnical and Geoenvironmental Engineering. 129(12): p. 1119-1127.
33. Prevost J. H. 1985 A simple plasticity theory for frictional cohesionless soils. International Journal of Soil Dynamics and Earthquake Engineering. 4(1): p. 9-17.
34. He L., Ramirez J., Lu J., Tang L., Elgamal A.&Tokimatsu K. 2017 Lateral spreading near deep foundations and influence of soil permeability. Canadian Geotechnical Journal. 54(6): p. 846-861.
35. Lu J., Kamatchi P.&Elgamal A. 2019 Using stone columns to mitigate lateral deformation in uniform and stratified liquefiable soil strata. International Journal of Geomechanics. 19(5): p. 04019026.
36. Ribó R., Pasenau M., Escolano E., Ronda J.&González L. 1998 GiD reference manual. CIMNE, Barcelona. 27.
37. Csi C. 2016 Analysis reference manual for SAP2000, ETABS, and SAFE. Computers and Structures, Berkeley, California, USA.
38. AISC 2010 Specification for structural steel buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago-Illinois.