ارزیابی عملکرد لرزه‌ای سازه-شالوده- ستون دانه‌ای متراکم با در نظر گرفتن اثر اندرکنش بر روی خاک قابل روانگرا

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار گروه مهندسی عمران، دانشکده مهندسی و فناوری، دانشگاه مازندران، بابلسر، ایران
2 دانشجوی کارشناسی ارشد مهندسی عمران، دانشکده مهندسی و فناوری، دانشگاه مازندران، بابلسر، ایران
3 کارشناس ارشد مهندسی عمران، دانشکده مهندسی و فناوری، دانشگاه مازندران، بابلسر، ایران
چکیده
از جمله مسائل مهم در احداث سازههای واقع در نواحی ساحلی لرزهخیز، ارزیابی پتانسیل پدیده روانگرایی در خاکهای زیرین سازه و اثر اندرکنش بین سازه-شالوده و خاک میباشد. پدیده روانگرایی در اثر وقوع زلزله و به دلیل نداشتن فرصت کافی برای زهکشی اضافه فشار آب حفرهای رخ میدهد. یکی از روش‌های موثر برای کنترل کردن پدیده روانگرایی، استفاده از ستونهای دانه‌ای متراکم در ابعاد و فواصل مناسب میباشد. عملکرد این ستون‌ها در کنترل پدیده روانگرایی به دو صورت میباشد: اولا از مصالحی ساخته شده که نفوذپذیری بیشتری نسبت به خاک محیط اطراف خود دارد و باعث میشود اضافه فشار آب حفرهای سریعتر زایل شود و دوم اینکه، سختی سیستم را افزایش میدهد که متناسب با آن به دلیل افزایش رفتار اتساعی، از ایجاد اضافه فشار آب حفرهای جلوگیری می­کند. در این پژوهش برای ارزیابی لرزهای تاثیر ستونهای دانه‌ای متراکم بر روی پاسخ‌های سازه با لحاظ کردن اثر اندرکنش بین آن‌ها به کمک نرم افزار اجزای محدود OpenSeesSP به‌صورت سه­بعدی مدل‌سازی شده است. برای پیش‌‌بینی پاسخ‌های دقیق‌تر، مدل ساختاری گروه ستونهای دانه‌ای متراکم و خاک، از نوع دراکر-پراگر چند سطحی درنظر گرفته شد که توانایی درنظر گرفتن رفتارهای انقباضی و انبساطی خاک تحت تنش‌های برشی سیکلی در خاکهای دانه‌ای را داراست. برای ارزیابی اثر سازه، سازه‌های فولادی پنج، ده و 15 طبقه با رفتار خطی مدل‌سازی شده است. تمام مدل‌ها تحت زلزله السنترو قرار داده شد و اثر سازه بر روی جابجایی جانبی، نشست، اضافه فشار آب حفره‌ای، طیف شتاب، دریفت و برش طبقات مورد بررسی قرار میگیرد. نتایج این پژوهش نشان دهنده تاثیر مثبت ستونهای دانه‌ای متراکم بر کاهش مولفه‌های جابجایی جانبی خاک و سازه، نشست شالوده و اضافه فشار آب حفره‌ای می‌باشد. همچنین وجود سازه بر روی خاک و افزایش طبقات آن، موجب افزایش مولفه‌های ذکر شده بغیر از جابجایی جانبی خاک گردیده است. در نظر گرفتن اثرات اندرکنش اگر چه باعث افزایش جابجایی‌های افقی مطلق طبقات خواهد شد اما در سازه‌های کوتاه‌تر باعث کاهش برش پایه طبقات و همچنین کاهش دریفت خمشی طبقات خواهد شد و در مقابل، در طبقات فوقانی سازه‌های بلندتر ممکن است گاها باعث افزایش برش‌ها نیز شود که نیاز تحلیل دینامیکی را ضروری می‌سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Seismic Response Assessment of Structure-Foundation-Dense Granular Column Considering Interaction Effect on the Liquefiable Soil

نویسندگان English

A. Asgari 1
B. Sahebian 2
M. Kazemi 3
1 Assistant Professor of Geotechnical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar
2 M.Sc Student., Department of Engineering and Technology University of Mazandaran, Babolsar, Iran.
3 M.Sc., Department of Engineering and Technology University of Mazandaran, Babolsar, Iran.
چکیده English

Two of the important issues in the construction of structures located in seismic coastal areas are the study of the potential of liquefaction phenomenon in saturated sandy soils and seismic structure-foundation-soil interaction (SSFSI). Control of structure damage on the liquefiable soil and large deformations of soil due to seismic loading and, also, the other responses such as: the accelerations at top of the structure/foundation and excess pore water pressure related of this phenomenon are very important. The phenomenon of liquefaction happens due to the occurrence of an earthquake and due to the lack of sufficient opportunity for drainage of excess pore water pressure. One of the effective and useful mitigation methods to control of the liquefaction phenomenon is the usage of dense granular column (DGC) in appropriate dimensions and distances on the ground susceptible to liquefaction. The role of the DGC in controlling the liquefaction phenomenon are follow as: firstly, the DGC is made of materials that are more permeable to sandy soils and cause the excess pore water pressure to be dissipate faster, and secondly, DGC increases the stiffness of the system, which proportionally reduces the excess water pore pressure due to the dilative behavior. To reduce the risks of liquefaction, it is necessary to fully understand its consequences. These consequences depend on permanent soil displacements, structural performance, structural characteristics, foundation and structure dimensions, soil conditions of the structure site, type of loading and earthquake intensity. The presence of the structure and impact of SSFSI affects the intensity of liquefaction and static and dynamic stresses in the soil. Most prior studies (e.g., physical, numerical, or analytical models), ignore the existence of the structure or consider the effect of soil-structure interaction (SSI) on the liquefiable soil layer as an equivalent model. Hitherto, the essence and extend of these interactions are not sufficiently understood. These methods can not properly assess the damage caused by liquefaction; Therefore, these methods cannot be used in the design of structures resistant to liquefaction. Therefore, to accurately study the effect of liquefaction, a method and model is needed that can fully consider the soil, foundation, and structure so that it can be used to correctly estimate the amount of subsidence and displacement of the structure. In this study, to evaluate the seismicity and the mitigation effect of DGCs, using OpenSees finite element software, modeling of DGCs and surrounding soils without structure and models with 5, 10 and 15 storey structures were performed. The three-dimensional soil and DGCs modeled in the software are placed under different earthquakes and the effects of structural layers on the lateral displacement, excess pore water pressure, response of acceleration spectrum, drift and shear force of stories are investigated. The liquefiable soil is modelled through the pressure-dependent multi yield surface soil constitutive law (PDMY02) applied in OpenSees. The results of this study are shown the positive effect of DGC on the reduction of lateral displacement components of soil and structure, foundation subsidence and excess water pore pressure. Also, the presence of the structure on the soil and the increase of its floors have increased the mentioned components except for lateral displacement of soil.

کلیدواژه‌ها English

Liquefaction
Dense granular column group
Interaction
Structure
3D Modeling
1. Hamada M.&O’Rourke T. 1992 Case studies of liquefaction and lifeline performance during past earthquakes. Volume 1, Japanese Case Studies. Technical Rep. NCEER-92. 1: p. 1-28.
2. Bray J., Cubrinovski M., Zupan J.&Taylor M. 2014 Liquefaction effects on buildings in the central business district of Christchurch. Earthquake Spectra. 30(1): p. 85-109.
3. Cubrinovski M., Winkley A., Haskell J., Palermo A., Wotherspoon L., Robinson K., et al.Hughes M. 2014 Spreading-induced damage to short-span bridges in Christchurch, New Zealand. Earthquake Spectra. 30(1): p. 57-83.
4. Cubrinovski M.&Ishihara K. 2004 Simplified method for analysis of piles undergoing lateral spreading in liquefied soils. Soils and foundations. 44(5): p. 119-133.
5. Priebe H.-J. The prevention of liquefaction by vibro replacement. in International conference on earthquake resistant construction and design. 1991.
6. Ashford S. A., Rollins K. M., Case Bradford V S., Weaver T. J.&Baez J. I. 2000 Liquefaction mitigation using stone columns around deep foundations: Full-scale test results. Transportation research record. 1736(1): p. 110-118.
7. Adalier K., Elgamal A., Meneses J.&Baez J. 2003 Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering. 23(7): p. 571-584.
8. Lu J., Peng J., Elgamal A., Yang Z.&Law K. H. 2004 Parallel finite element modeling of earthquake ground response and liquefaction. Earthquake Engineering and Engineering Vibration. 3(1): p. 23-37.
9. Elgamal A., Lu J.&Forcellini D. 2009 Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation. Journal of geotechnical and geoenvironmental engineering. 135(11): p. 1672-1682.
10. Rayamajhi D. 2014 Shear reinforcement effects of discrete columns in liquefiable soils.
11. Rayamajhi D., Ashford S. A., Boulanger R. W.&Elgamal A. 2016 (a) Dense granular columns in liquefiable ground. I: shear reinforcement and cyclic stress ratio reduction. Journal of Geotechnical and Geoenvironmental Engineering. 142(7): p. 04016023.
12. Rayamajhi D., Boulanger R. W., Ashford S. A.&Elgamal A. 2016 (b) Dense granular columns in liquefiable ground. II: Effects on deformations. Journal of Geotechnical and Geoenvironmental Engineering. 142(7): p. 04016024.
13. Ben Salem Z., Frikha W.&Bouassida M. 2016 Effect of granular-column installation on excess pore pressure variation during soil liquefaction. International Journal of Geomechanics. 16(2): p. 04015046.
14. Tang L., Zhang X.&Ling X. 2016 Numerical simulation of centrifuge experiments on liquefaction mitigation of silty soils using stone columns. KSCE Journal of Civil Engineering. 20(2): p. 631-638.
15. urali A., Godson M., Shanmugam G. K.&Subramani N. 2022 Applicability Analysis of Stone Column Against Liquefaction Under Repeated Dynamic Events, in Ground Improvement and Reinforced Soil Structures. Springer. p. 305-315.
16. Kumar R.&Takahashi A. 2022 Reliability assessment of the performance of granular column in the nonuniform liquefiable ground to mitigate the liquefaction-induced ground deformation. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 16(2): p. 376-395.
17. Chafale A.&Annam M. K. 2022 A Review on Ground Improvement with Surcharge in Addressing Liquefaction Mitigation. Dynamics of Soil and Modelling of Geotechnical Problems: p. 367-375.
18. Zhou Y.-G., Liu K., Sun Z.-B.&Chen Y.-M. 2021 Liquefaction mitigation mechanisms of stone column-improved ground by dynamic centrifuge model tests. Soil Dynamics and Earthquake Engineering. 150: p. 106946.
19. Carlos Tiznado J., Dashti S.&Ledezma C. 2021 Probabilistic predictive model for liquefaction triggering in layered sites improved with dense granular columns. Journal of Geotechnical and Geoenvironmental Engineering. 147(10): p. 04021100.
20. Rashma R., Jayalekshmi B.&Shivashankar R. Seismic performance of pervious concrete column improved ground in mitigating liquefaction. in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing.
21. Tang L., Liu S., Ling X., Wan Y., Li X., Cong S.&Su L. 2021 Seismic Soil Liquefaction Mitigation Using Stone Columns for Pile-supported Wharves. Journal of Earthquake Engineering: p. 1-28.
22. Meite R., Wotherspoon L.&Green R. 2022 Influence of extent of remedial ground densification on seismic site effects via 2-D site response analyses. Soil Dynamics and Earthquake Engineering. 152: p. 107041.
23. Seed H. B.&Booker J. R. 1977 Stabilization of potentially liquefiable sand deposits using gravel drains. Journal of the geotechnical engineering division. 103(7): p. 757-768.
24. Sasaki Y.&Taniguchi E. 1982 Shaking table tests on gravel drains to prevent liquefaction of sand deposits. Soils and Foundations. 22(3): p. 1-14.
25. Brennan A.&Madabhushi S. Physical and numerical modelling of drainage in liquefied soils. in Fourth International Conference on Seismology and Earthquake Engineering, Tehran, Iran. 2003.
26. Asgari A., Oliaei M.&Bagheri M. 2013 Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques. Soil Dynamics and Earthquake Engineering. 51: p. 77-96.
27. Forcellini D. 2020 Soil-structure interaction analyses of shallow-founded structures on a potential-liquefiable soil deposit. Soil Dynamics and Earthquake Engineering. 133: p. 106108.
28. Karimi Z.&Dashti S. 2016 Numerical and centrifuge modeling of seismic soil–foundation–structure interaction on liquefiable ground. Journal of Geotechnical and Geoenvironmental Engineering. 142(1): p. 04015061.
29. McKenna F., Mazzoni S.&Fenves G. 2011 Open system for earthquake engineering simulation (OpenSees) software version 2.2. 0. University of California, Berkeley, CA. Available from http://opensees.berkeley.edu.
30. McKenna F.&Fenves G. L. 2008 Using the OpenSees interpreter on parallel computers. Network for earthquake engineering simulations.
31. Yang Z., Lu J.&Elgamal A. 2008 OpenSees soil models and solid-fluid fully coupled elements. User's Manual. Ver. 1: p. 27.
32. Yang Z., Elgamal A.&Parra E. 2003 Computational model for cyclic mobility and associated shear deformation. Journal of Geotechnical and Geoenvironmental Engineering. 129(12): p. 1119-1127.
33. Prevost J. H. 1985 A simple plasticity theory for frictional cohesionless soils. International Journal of Soil Dynamics and Earthquake Engineering. 4(1): p. 9-17.
34. He L., Ramirez J., Lu J., Tang L., Elgamal A.&Tokimatsu K. 2017 Lateral spreading near deep foundations and influence of soil permeability. Canadian Geotechnical Journal. 54(6): p. 846-861.
35. Lu J., Kamatchi P.&Elgamal A. 2019 Using stone columns to mitigate lateral deformation in uniform and stratified liquefiable soil strata. International Journal of Geomechanics. 19(5): p. 04019026.
36. Ribó R., Pasenau M., Escolano E., Ronda J.&González L. 1998 GiD reference manual. CIMNE, Barcelona. 27.
37. Csi C. 2016 Analysis reference manual for SAP2000, ETABS, and SAFE. Computers and Structures, Berkeley, California, USA.
38. AISC 2010 Specification for structural steel buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago-Illinois.