ارزیابی آزمایشگاهی مخلوط‌های آسفالتی نیمه گرم (H-WMA) حاوی مقادیر زیاد تراشه آسفالتی (RAP)

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استاد، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران
2 دانشجو کارشناسی ارشد، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران
چکیده
آسفالت نیمه گرم (Half-Warm Mix Asphalt) به دلیل شرایط تولید خاص خود، یکی از گزینه‌های جایگزینی آسفالت‌های مرسوم است. آسفالت نیمه گرم (H-WMA) در محدوده دمایی 100-60 درجه سانتیگراد تولید و متراکم می‌شود که نسبت به آسفالت داغ (HMA) دمای کمتری در مراحل تولید نیاز دارد. هدف این مطالعه بررسی تأثیرات درصدهای بالای تراشه آسفالت بازیافتی (RAP) استفاده شده در آسفالت نیمه گرم بر روی خصوصیات وزنی-حجمی و مکانیکی آنها است. در این راستا، نمونه‌های آسفالت نیمه گرم با درصدهای جایگزینی 70 و 100 درصد، ساخته شده و با نمونه شاهد ساخته شده با روش داغ (HMA) مقایسه شده است. درصد قیر بهینه برای تمامی مخلوط‌ها بدست آمد و سپس آزمایش‌های کشش غیرمستقیم (IDT) (در دمای 25 درجه سانتیگراد)، حساسیت رطوبتی نمونه‌های آسفالت داغ (HMA) و نیمه‌ گرم و آزمایش خمش نیم‌دایره‌ای در دماهای میانی و پایین انجام شد. آزمایشات کشش غیرمستقیم نتایج قابل قبولی ارائه دادند به اینصورت که با افزایش درصد جایگزینی RAP، مقاومت IDT افزایش داشت. به دنبال این موضوع، نسبت مقاومت کششی (TSR) نمونه‌های آسفالتی نیمه‌ گرم، با افزایش درصد جایگزینی RAP بهبود یافت، به این صورت که بیشتر بودن مقدار TSR مخلوط‌های آسفالتی حاوی RAP نسبت به مخلوط بدون RAP نشان دهنده‌ی مقاومت بیشتر مخلوط‌های حاوی RAP بود. نتایج آزمایشات SCB در دماهای میانی و پایین نشان داد که استفاده بیشتر از RAP موجب شکننده شدن نمونه‌ها می‌شود و این به معنی کاهش مقاومت در برابر گسترش ترک و بدتر شدن انتشار آن است، نتایج تعیین میزان انرژی شکست مخلوط‌های آسفالتی نشان داد که مخلوط‌های حاوی درصد RAP بالاتر، انرژی شکست کمتری دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Laboratory Evaluation of Half-Warm Mix Asphalt (H-WMA) Containing High Reclaimed Asphalt Pavement (RAP)

نویسندگان English

A. Kavussi 1
J. Rahimi 2
1 Professor, Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
2 M.Sc. Student, Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
چکیده English

Half warm mix asphalt (H-WMA) is one of the alternatives to conventional asphalt due to its special production conditions. Half warm mix asphalt (H-WMA) manufactured with high proportions of reclaimed asphalt pavement (RAP). Half warm mix asphalt (H-WMA) are produced and compacted at the temperature range of 60-100 ° C, which requires less temperature for production process of hot mix asphalt (HMA) for example cold mix asphalt (CMA) manufactured at a temperature lower than 60 ° C; (ii) half warm mix asphalt (H-WMA) manufactured at less than 100 ° C, normally at 60-100 ° C; (iii) warm mix asphalt (WMA) manufactured at temperatures of 100-140 ° C. The aim of this study is to investigate the effects of high percentages of reclaimed asphalt pavement (RAP) on the volumetric and mechanical properties of Half warm mix asphalt (H-WMA) mixtures. In this research, bitumen emulsion (CSS-1) and conventional bitumen 60/70 were used. The siliceous aggregates were obtained from a mine near Tehran and reclaimed asphalt pavement (RAP) were obtained from an asphalt plant and its granulation before and after extraction was done according to report number 234. Generally speaking, in H-WMA, aggregates are heated to temperatures of 100-110 ° C and then mixed with emulsion, which has previously been heated to 60-80 ° C and RAP are heated to 90-100 ° C. To determine the most suitable mixing time in the tests, the coating was visually analyzed after mixing times of 1 and 2 min and the mixing temperature was 95-85 ° C. Thus, a laboratory analysis was carried out in which the behavior of half warm mix asphalt (H-WMA) manufactured with 100%, 70% and 0% reclaimed asphalt pavement (RAP) was compared with that of a control mix, Hot mix asphalt (HMA). Optimum bitumen content for hot asphalt mixture (HMA) and optimum bitumen emulsion content for half warm mix asphalt (H-WMA) were calculated. Then indirect tensile tests (IDT) (at 25° C), moisture damage (TSR) and Semi-Circular Bending (SCB) Tests (at 25° C and -20° C) were performed on half warm mix asphalt (H-WMA) and hot mix asphalt (HWA). indirect tensile tests (IDT) yielded acceptable results, the IDT resistance increased with increasing the reclaimed asphalt pavement (RAP) content. Following this, the moisture damage (TSR) of half warm mix asphalt (H-WMA) improves by increasing the reclaimed asphalt pavement (RAP) content, which can be due to the complete covering of the surface of the aggregates with aged bitumen and the high adhesion force between the aged bitumen and the aggregates and the lack of moisture penetration into the aggregates. emulsified bitumen exhibited proper volumetric (e.g., air voids and density) and mechanical behavior in terms of moisture damage and IDT. On the other hand, the results of SCB tests at medium and low temperatures showed that by increasing the RAP content the samples become brittle, which means that resistance to crack propagation reduced, and it may be the reason for fracture energy reduction. These findings encourage greater confidence in promoting the use of these sustainable asphalt mixes for their use in road pavements or urban streets.

کلیدواژه‌ها English

Half-Warm Mix Asphalt (H-WMA)
Recycled Asphalt Pavement (RAP)
Bitumen Emulsion
Indirect Tensile Test (IDT)
Moisture Damage
Semi Circular Bending (SCB) Tests
[1] Nations U. Transforming our world: the 2030 Agenda for Sustainable Development. 2015. Contract No.: A/RES/70/1.
[2] Association EAP. The use of Warm Mix Asphalt. 2014. Website: https://eapa.org/warm-mix-asphalt/
[3] Sol-Sánchez M, Moreno-Navarro F, Rubio-Gámez MC. Study of surfactant additives for the manufacture of warm mix asphalt: from laboratory design to asphalt plant manufacture. Applied Sciences. 2017;7(7):745.
[4] Zaumanis M, Mallick RB, Frank R. 100% recycled hot mix asphalt: A review and analysis. Resources, Conservation and Recycling. 2014;92:230-45.
[5] Jahanbakhsh H, Karimi MM, Naseri H, Nejad FM. Sustainable asphalt concrete containing high reclaimed asphalt pavements and recycling agents: Performance assessment, cost analysis, and environmental impact. Journal of Cleaner Production. 2020;244:118837.
[6] Bardesi A, Soto JA. Low-temperature bitumen mixing: Cold, half warm and warm mixing. 2010;4:7-24.
[7] Marcobal J, Lizárraga J, Gallego J. Laboratory Compaction Study and Mechanical Performance Assessment of Half-Warm Mix Recycled Asphalt Mixtures Containing 100% RAP. Materials. 2019;12(12):1992.
[8] Aurangzeb Q, Al-Qadi IL, Ozer H, Yang R. Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resources, conservation and recycling. 2014;83:77-86.
[9] Lee N, Chou C-P, Chen K-Y. Benefits in energy savings and CO2 reduction by using reclaimed asphalt pavement. 2012.
[10] Mattinzioli T, Moreno F, Rubio M, Martínez G, editors. LCA and cost comparative analysis of half-warm mix asphalts with varying degrees of RAP. Pavement, Roadway, and Bridge Life Cycle Assessment 2020: Proceedings of the International Symposium on Pavement Roadway, and Bridge Life Cycle Assessment 2020 (LCA 2020, Sacramento, CA, 3-6 June 2020); 2020: CRC Press.
[11] Swaroopa S, Sravani A, Jain P. Comparison of mechanistic characteristics of cold, mild warm and half warm mixes for bituminous road construction. Indian Journal of Engineering and Materials Sciences. 2015;22:85-92.
[12] Zhao S, Huang B, Shu X, Woods M. Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Construction and Building Materials. 2013;44:92-100.
[13] Ma T, Zhang D, Zhang Y, Zhao Y, Huang X. Effect of air voids on the high-temperature creep behavior of asphalt mixture based on three-dimensional discrete element modeling. Materials & Design. 2016;89:304-13.
[14] Rodríguez-Alloza A, Gallego J. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives. Materiales de Construcción. 2017;67(327):123.
[15] Karlsson R, Isacsson U. Material-related aspects of asphalt recycling—state-of-the-art. Journal of materials in civil Engineering. 2006;18(1):81-92.
[16] Mogawer WS, Austerman AJ, Kluttz R, Roussel M. High-performance thin-lift overlays with high reclaimed asphalt pavement content and warm-mix asphalt technology: Performance and workability characteristics. Transportation research record. 2012;2293(1):18-28.
[17] Behnood A. A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. Journal of Cleaner Production. 2020;259:120817.
[18] Majidifard H, Tabatabaee N, Buttlar W. Investigating short-term and long-term binder performance of high-RAP mixtures containing waste cooking oil. Journal of Traffic and Transportation Engineering (English Edition). 2019;6(4):396-406.
[19] Pasandín AR, Pérez I, Gómez-Meijide B. Performance of High Rap Half-Warm Mix Asphalt. Sustainability. 2020;12(24):10240.
[20] Nsengiyumva G, You T, Kim Y-R, Beran M. Investigation of testing variables of semicircular bending test for asphalt concrete mixtures: experimental-statistical approach. 2016.
[21] Chen L, Qian Z, Wang J. Multiscale numerical modeling of steel bridge deck pavements considering vehicle–pavement interaction. International Journal of Geomechanics. 2016;16(1):B4015002.
[22] Aliha M, Bahmani A, Akhondi S. A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study. International Journal of Solids and Structures. 2016;90:167-77.
[23] Ayatollahi M-R, Pirmohammad S. Temperature effects on brittle fracture in cracked asphalt concretes. Structural engineering and mechanics: An international journal. 2013;45(1):19-32.
[24] Jiang J, Ni F, Dong Q, Wu F, Dai Y. Research on the fatigue equation of asphalt mixtures based on actual stress ratio using semi-circular bending test. Construction and Building Materials. 2018;158:996-1002.
[25] Singh D, Chitragar SF, Ashish PK. Comparison of moisture and fracture damage resistance of hot and warm asphalt mixes containing reclaimed pavement materials. Construction and Building Materials. 2017;157:1145-53.
[26] Hınıslıoğlu S, Ağar E. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Materials letters. 2004;58(3-4):267-71.