تعیین ضریب رفتار قاب‌های خمشی فولادی با شکل پذیری متوسط با در نظر گرفتن اثر نرمی اتصال

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه رازی، کرمانشاه
2 دانشگاه صنعتی کرمانشاه
چکیده
سیستم‌ قاب خمشی فولادی به دلایل متعددی از جمله سرعت ساخت بالا، مقاومت و شکل‌پذیری مناسب و ... مورد استفاده قرار می‌گیرد. بزرگترین مزیت این سیستم، مربوط به ملاحظات معماری و امکان ایجاد بازشو در دهانه­های مختلف می­باشد. اتصالات این سیستم سازه­ای از تاثیرگذارترین مولفه­ها در پاسخ­های این سیستم می­باشند. در فرایند تحلیل و طراحی این سیستم سازه­ای، فرض بر آن است که اتصالات دارای رفتاری کاملاً صلب می‌باشند. تحقیقات گذشته نشان داده­اند که فرض صلب بودن رفتار اتصال، به دلایل متعدد ممکن است صحیح نباشد و سبب ایجاد خطا در نتایج تحلیل و طراحی شود. در این مقاله، تاثیر نیمه صلب بودن اتصالات تیر به ستون، بر رفتار لرزه­ای قاب­های خمشی فولادی در راستای تعیین ضریب رفتار سازه، مورد بررسی قرار گرفته‌ است. بدین منظور قاب­های خمشی فولادی با شکل­پذیری متوسط، با تعداد دهانه­ها و طبقات مختلف شامل قاب­های یک و دو طبقه­ی یک دهانه، قاب­های دو، چهار، شش، هشت و ده طبقه­ی دو دهانه، قاب­های سه، شش، نه و دوازده طبقه­ی سه دهانه و قاب­های دو، شش، ده و چهارده طبقه­ی چهار دهانه در نظر گرفته شدند و براساس ویرایش چهارم آیین­نامه‌های 2800 و مبحث 10 مقررات ملی ساختمان، تحلیل و طراحی شدند. در ادامه، تحلیل بار افزون روی این قاب­ها انجام شد و منحنی ظرفیت این قاب­ها، یکبار با فرض صلب بودن اتصال و سپس با در نظر گرفتن نرمی اتصال (یکبار با فرض 60 درصد مقاومت نهایی و بار دیگر با فرض 80 درصد مقاومت نهایی) با استفاده از نرم­افزار­OpenSees، استخراج گردید. به منظور مدل‌سازی رفتار اتصال در این نرم­افزار، از دو فنر با طول صفر، در انتهای تیرها استفاده گردید و منحنی لنگر-دوران اتصال، به این فنرها اختصاص داده شد. سپس ضریب رفتار هر قاب با استفاده از روش پیشنهادی FEMA-P695 محاسبه گردید. نتایج نشان می‌دهد که برای قاب­ها با فرض اتصال صلب، ضریب رفتار محاسبه شده نزدیک به 5 می­باشد، که مقدار توصیه شده برای این سیستم سازه­ای در آئین­نامه 2800(ویرایش چهارم) می­باشد. همچنین مقایسه­ی ضرایب رفتار قاب­های دارای اتصال صلب و نیمه صلب (60 درصد) نشان می­دهد که مقادیر ضریب رفتار در این قاب­ها، در یک محدوده­ می‌باشند. ارزیابی نتایج نشان می­دهد که با در نظر گرفتن نرمی اتصالات، اگرچه مقاومت سازه کاهش یافته ­است، شکل‌پذیری سازه افزایش یافته و نهایتاً مقدار ضریب رفتار افزایش یافته است. از بین ­قاب­های بررسی شده، در قاب­های 2 دهانه­ی 10 طبقه، 3 دهانه­ی 12 طبقه و 4 دهانه­ی 14 طبقه، ضریب رفتاری کمتر از 5 حاصل شده ­است. بررسی نسبت ارتفاع به طول دهانه این قاب­ها نشان می­دهد که در این سازه­ها، نسبت ارتفاع سازه به طول دهانه در مقایسه با سازه­های دیگر بیشتر می­باشد و به نوعی می­توان این سازه­ها را نسبت به دیگر سازه­های بررسی شده، جز سازه­های لاغر در نظرگرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Behavior Factor of Intermediate Moment-resisting Steel Frames Considering Joint Flexibility

نویسندگان English

F. Tabari 1
R. Aghayari 1
M. Izadpanah 2
1 Kermanshah university of technology
چکیده English

The moment-resisting steel frame building is highly used due to their advantages such as, high speed construction coupled with appropriate strength and ductility. The main advantage of this system is related to architectural considerations and the possibility of creating openings within all spans. Connections play an outstanding role in the seismic responses of this structural system. The connections are generally assumed to have a rigid behavior in analyzing and designing of the moment-resisting steel buildings. Studying of the previous investigations indicates that the assumption of rigid behavior for the beam-to-column connections is not always correct and can bring about a significant error in the responses. In this study, behavior factor of moment-resisting steel frames considering joint flexibility is evaluated. To do so, some intermediate moment-resisting steel frames with various number of stories and bays including 1-bay, 1- and 2-story frames, 2-bay, 2-, 4-, 6-, 8-, and 10-story frames, 3-bay, 3-, 6-, 9-, and 12-story frames and 4-story, 2-, 6-, 10-, and 14-story frames are designed regarding Iranian seismic code and Iranian national building code for designing steel structures. After that, the capacity curves of these frames are achieved using pushover analysis once considering rigid connections and again taking joint flexibility into consideration using OpenSees software. To model the nonlinear behavior of connections, one zero-length rotational spring is assigned to each end of beam members. Then, the behavior factor of each frame is calculated using the recommended procedure of FEMA-P695. The outcomes show that for the frames with rigid connections, the acquired behavior factors are almost close to 5 (which is the prescribed behavior factor in Iranian seismic code for the intermediate moment-resisting steel frames). Furthermore, for the frames with semi-rigid connections (60%), the behavior factors are close to 5 as well. For 10-story 2-bay, 12-story 3-bay, and 14-story 4-bay frames the prescribed behavior factor in Iranian seismic code does not meet. For these frames, the ratio of height to total-span that is known as the slenderness coefficient of the frame is higher than others, so these frames fall into slender frames. Results show that for the frames with semi-rigid connections (60%), despite of decreasing the over-strength factors in some cases, their ductility increased, therefore, the behavior factors are achieved higher than those of the frames with rigid connections. All in all, it is observed that the nonlinear behavior of connections can significantly affect the seismic behavior of the moment-resisting steel frames. Comparing the behavior factors calculated in this investigation with the prescribed value of this factor in code 2800 showed that for the frames with rigid connections, 80% of the obtained behavior factors are higher than 5. For frames with semi-rigid connections (80% and 60%), 0%, and 66% of the behavior factors meet the proposed value of code 2800, respectively. Regarding the observations, it is recommended that the influence of joint flexibility be considered in assigning a value of behavior factor to design the moment-resisting steel frames.

Keywords: rigid connections, semi-rigid connections, moment-resisting steel frame, nonlinear static analysis, distributed and concentrated plasticity models

کلیدواژه‌ها English

Steel frame
rigid connection
semi-rigid connection
nonlinear static analysis
spread and lumped plastisity
[1] Ghasem Fam. M (2013). The behavior factor of the moment-ressting reinforced concrete frames with vertical irregularity. M.Sc thesis, Kurdistan University, Sanandaj, Iran (in persian).
[2] Ministry of road and urban planning, designing buildings against seismic loads, code 2800, fourth edition.
[3] Mahmoudi, M and Tasnimi, A (1386). The range of variation of behavior factor in SDOF systems. Fourth international congress of civil engineering, sharif university, Tehran, Iran, pp 288-295.
[4] Rafiee, A (2012). the behavior factor steel buildings equipped cylenrical friction dampers, M.Sc thesis, Khajeh Nasir University, Tehran, Iran (in persian).
[5] Lui, E. M., & Chen, W. F. (1986). Analysis and behaviour of flexibly-jointed frames. Engineering Structures, 8(2), 107-118‏.
[6] Elnashai, A. S., & Elghazouli, A. Y. (1994). Seismic behaviour of semi-rigid steel frames. Journal of Constructional Steel Research, 29(1-3), 149-174.
[7] Bernuzzi, C., Zandonini, R., & Zanon, P. (1996). Experimental analysis and modelling of semi-rigid steel joints under cyclic reversal loading. Journal of Constructional Steel Research, 38(2), 95-123.‏
[8] Gupta, A. (1999). Seismic demands for performance evaluation of steel moment resisting frame structures. Stanford University.‏
[9] Maison, B. F., Kasai, K., & Mayangarum, A. (2000). SAC. BD-99/16. Seismic Performance of 3 and 9 Story Partially Restrained Moment Frame Buildings. Technical report, SAC Joint Venture.‏
[10] Maison, B. F., Kasai, K., & Mayangarum, A. (2002). Effects of partially restrained connection stiffness and strength on frame seismic performance. SAC Joint Venture.
[11] Aksoylar, N. D., Elnashai, A. S., & Mahmoud, H. (2011). The design and seismic performance of low-rise long-span frames with semi-rigid connections. Journal of Constructional Steel Research, 67(1), 114-126.
[12] Izadinia, M., Rahgozar, M. A., & Mohammadrezaei, O. (2012). Response modification factor for steel moment-resisting frames by different pushover analysis methods. Journal of Constructional Steel Research, 79, 83-90.‏
[13] Metin, T. (2013). A Parametric study on the influence of semi-rigid connection nonlinearity on steel special moment frames (Master's thesis, Middle East Technical University).
[14] Rigi, A., JavidSharifi, B., Hadianfard, M. A. & Yang, T. Y. (2021). Study of the seismic behavior of rigid and semi-rigid steel moment-resisting frames. Journal of Constructional Steel Research, 186, 106910.
[15] Thai, H. T., Uy, B., Kang, W. H., & Hicks, S. (2016). System reliability evaluation of steel frames with semi-rigid connections. Journal of Constructional Steel Research, 121, 29-39.‏
[16] Nguyen, P. C., & Kim, S. E. (2014). Distributed plasticity approach for time-history analysis of steel frames including nonlinear connections. Journal of Constructional Steel Research, 100, 36-49.
[17] Zhang, C., Ling, B., Huang, W., Deng, X., Ding, C., Gao, J., & Zhang, S. (2022). Cyclic behavior of semi-rigid steel frame infilled with damping wall panels. Journal of Building Engineering, 51, 104238.
[18] Yin, L., Niu, Y., Quan, G., Gao, H., & Ye, J. (2022). Development of new types of bolted joints for cold-formed steel moment frame buildings. Journal of Building Engineering, 50, 104171.
[19] Paral, A., Roy, D. K. S., & Samanta, A. K. (2021). A deep learning-based approach for condition assessment of semi-rigid joint of steel frame. Journal of Building Engineering, 34, 101946.
[20] Ru, Y., He, L., & Jiang, H. (2022). Study on a new type of beam-column joint equipped with inclined tapered steel plates. Journal of Building Engineering, 45, 103581.
[21] Zhang, C., Li, Z., Huang, W., Deng, X., & Gao, J. (2021). Seismic performance of semi-rigid steel frame infilled with prefabricated damping wall panels. Journal of Constructional Steel Research, 184, 106797.
[22] Liu, D., Wang, Z., Pan, J., Zheng, Y., & Hu, Z. (2022). Optimum design of nonlinear semi-rigid steel frame based on performance-price ratio via genetic algorithm. Journal of Building Engineering, 105287.
[23] ATC, "A Critical Review of Current Approaches to Earthquake-Resistant Design", ATC-34 Report, Applied Technology Council, Redwood City, California, US, 1995.
[24] Structural Response Modification Factors , ATC-19. National Science Foundation Grant NO.ECE-8600721 and National Center For Earthquake Engineering Research NCEER Project NO.92-4601.
[25] Freeman, S.A., (1990). “On The correlation of code force to earthquake demands”, Of The 4th U. S. Japan Workshop on Improvement of Building Structural Design and Construction Practices, ATC15-3
[26] Uang C.M., (1991). ”Establishing R (or Rw) and Cd factors for building seismic provisions”, Struct Eng ASCE;117:19–28.
[27] Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center, 264(1), 137-158.
[28] Karakaş, Z. (2017). Influence of the nonlinear behavior of semi-rigid connections on the analysis of low-rise steel framed structures (Master's thesis, Middle East Technical University).‏
[29] Saritas, A., & Koseoglu, A. (2015). Distributed inelasticity planar frame element with localized semi-rigid connections for nonlinear analysis of steel structures. International Journal of Mechanical Sciences, 96, 216-231.
[30] Tabari, F. (2022). Determination of behavior factor of moment-resisting steel frames considering joint flexibility effects, M.Sc thesis,Razi university, Kermanshah, Iran (in-persian).