ارزیابی احتمالاتی شکنندگی سازه‌های شبکه قطری دارا و بدون قاب خمشی داخلی و با الگوی هندسی پیرامونی مختلف

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانش آموخته
2 هیات علمی دانشکده مهندسی
چکیده
مفهوم سازی و پیاده سازی آنالیز شکنندگی، یک رویکرد مناسب به منظور کنترل احتمالاتی رخداد سطوح عملکرد مختلف در اسکلت‌های مقاوم سازه ای است. هدف از این پژوهش، ارزیابی تاثیر چیدمان قاب خمشی داخلی پلان بر عملکرد لرزه‌ای سازه‌های شبکه قطری با زوایای پیکربندی محیطی مختلف، بر پایه روابط شکنندگی می‌باشد. بدین ترتیب، سه سازه 24 طبقه شبکه قطری با زوایای المان مورب پیرامونی 49، 67 و 74 درجه به دو صورت دارا و بدون قاب خمشی داخلی پلان، طراحی شد. با انجام تحلیل‌های تاریخچه زمانی غیرخطی و دینامیکی فزاینده (IDA)، شکل‌پذیری و ظرفیت مقاومت سازه‌های مطالعاتی تحت رکوردهای حوزه نزدیک حاوی موجک‌های پرانرژی، مورد بررسی قرار گرفت. سپس، نمودار‌های شکنندگی سازه‌های شبکه قطری، بر اساس توزیع آماری لوگ-نرمال برای چهار وضعیت عملکرد لرزه‌ای، محاسبه شد. مطابق با نتایج حاصله، پیکربندی هندسی محیطی با زوایای 49 درجه، بیشترین سطح اطمینان را در برابر رخداد سطوح عملکرد لرزه‌ای برای سازه‌های شبکه قطری ایجاد می‌کند. نمودار‌های شکنندگی نشان دادند که روند خرابی کلی در سازه‌های شبکه قطری بدون قاب خمشی داخلی با آهنگ سریع‌تری نسبت به سازه‌های هم‌پایه دارای قاب خمشی پدیدار می‌شود. بر پایه ارزیابی آسیب‌پذیری سازه‌های مطالعاتی، اندازه و دامنه تاثیرگذاری چیدمان قاب­های خمشی داخلی پلان بر بهبود و کاهش نسبی دامنه رفتار غیرخطی سازه‌های شبکه قطری، وابسته به زوایای المان مورب الگوی مثلثی پیرامونی است. دراین‌باره نیز تعبیه زوایای بزرگ پیکربندی محیطی، میزان اثر بخشی چیدمان قاب خمشی داخلی بر جلوگیری از وقوع ناپایداری کلی دینامیکی (GI) در سازه‌های شبکه قطری را افزایش می‌دهد. جایگزینی و چیدمان قاب­های خمشی در بخش میانی پلان سازه سبب افزایش کارآمدی مکانیزم استهلاک انرژی زلزله در ساختارهای شبکه قطری می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Probabilistic Evaluation of the Fragility of Diagrid Structures with and without Internal Moment Frames and Various Perimeter Geometric Configurations

نویسندگان English

M. Roshani 1
A. Meshkat-Dini 2
A. Massumi 2
1 Graduate in Earthquake engineering
2 Assistant Professor
چکیده English

The evaluation of the fragility functions is an analytical approach that allows different ground motions to be used at varying intensity levels and represent various characteristics of low-intensity and high-intensity shakings. The fragility curves demonstrate the structure’s probability of collapse, or other limit states, as a function of some ground motion intensity measures (IM). The intensity measure is often quantified by spectral acceleration (Sa) or peak ground acceleration (PGA). Based on the statistical procedures, the parameters of the fragility functions are computed by assessing the results of nonlinear dynamic time history analyses. Therefore, the probability of failure associated with a prescribed criterion (e.g. the maximum inter-story drift) is estimated based on the probabilistic distribution relations.

This paper evaluates the effects of internal flexural frames on the seismic performance of diagrid structures based on fragility curves. This evaluation is achieved by designing a group of 24-story studied diagrid models with various diagonal angles of 49, 67, and 74 according to the Iranian Standard No. 2800 (4th edition) and the Iranian National Building Code (Steel Structures-Issue 10). Then, some specific interior gravity frames of the studied diagrid models are replaced with bending frames. The seismic vulnerability of the studied diagrid structures with and without internal bending frames is assessed using nonlinear time history and incremental dynamic analyses (IDA) under near-field earthquake records containing different directivity effects. Finally, the fragility curves for the studied structures were obtained based on the lognormal probabilistic distribution function for the seismic performance limit states including IO, LS, CP, and global instability (GI). Moreover, the seismic performance levels of the studied structures were determined based on the FEMA 356.

The results of performed nonlinear time history analyses indicate that the application of internal bending frames in diagrid structures would reduce the value of inter-story drift in upper floor levels, especially when the angles of exterior diagonal members are large. The results also show that the global instability of diagrid structures without internal bending frames can occur at a faster rate than the skeletal models with internal bents. Also, the contribution of the internal bending frames in improving the nonlinear behavior of diagrid structures depends on the perimeter triangular patterns. Due to this dependency, the increase in the angle of the inclined members in skeletal geometric configuration can increase the effectiveness of the internal bending frames in preventing the occurrence of global dynamic instability. The fragility curves of the studied diagrid structures illustrate that the internal bending frames reduce potentially excessive seismic performance levels. Furthermore, the internal bending frames amplify the seismic energy dissipation capability of the diagrid structures.

کلیدواژه‌ها English

Diagrid Structure
Fragility Curve
Incremental dynamic analysis
collapse
Seismic Performance Level
[1] Jaiswal, K., Wald, D. & D’Ayala, D. (2011). Developing empirical collapse fragility functions for global building types. Earthquake Spectra, vol. 27, no. 3, DOI: 10.1193/1.3606398.
[2] Anvarsamarin, A., Rahimzadeh Rofooei, F. & Nekooei, M. (2020). Torsion effect on the RC structures using fragility curves considering with soil-structure interaction. Rehabilitation in Civil Engineering, vol. 8, no. 1, pp. 1–21.
[3] Mashhadiali, N. & Kheyroddin, A. (2018). Seismic performance of concentrically braced frame with hexagonal pattern of braces to mitigate soft story behavior. Engineering Structures, vol. 175, pp. 27–40.
[4] Mashhadiali, N. & Kheyroddin, A. (2019). Quantification of the seismic performance factors of steel hexagrid structures. Constructional Steel Research, vol. 157, pp. 82–92.
[5] Wang, X., Wen, W. & Zhai, Ch. (2020). Vulnerability assessment of a high-rise building subjected to mainshock–aftershock sequences. Structural Design of Tall and Special Buildings, vol. 29, no. 15, DOI: 10.1002/tal.1786.
[6] Hu, S. & Wang, W. (2021). Comparative seismic fragility assessment of mid-rise steel buildings with non-buckling (BRB and SMA) braced frames and self-centering energy-absorbing dual rocking core system. Soil Dynamics and Earthquake Engineering, vol. 142, DOI: 10.1016/j.soildyn.2020.106546.
[7] Mele, E., Toreno, M., Brandonisio, G. & De Luca, A. (2014). Diagrid structures for tall buildings: case studies and design considerations. Structural Design of Tall and Special Buildings, vol. 23, no. 2, pp. 124-145.
[8] Moradi, M. & Abdolmohammadi, M. (2020). Seismic fragility evaluation of a diagrid structure based on energy method. Constructional Steel Research, vol. 174, DOI: 10.1016/j.jcsr.2020.106311.
[9] Rofooei, F.R. & Seyedkazemi, A. (2020). Evaluation of the Seismic Performance Factors for Steel Diagrid Structural Systems Using FEMA P-695 and ATC-19 Procedures. Bulletin of Earthquake Engineering, vol. 18, pp. 4873–4910.
[10] Mohsenian, V., Padashpour, S. & Hajirasouliha, I. (2020). Seismic Reliability Analysis and Estimation of Multilevel Response Modification Factor for Steel Diagrid Structural Systems. Building Engineering, vol. 29, DOI: 10.1016/j.jobe.2019.101168.
[11] Dabbaghchian, I., Mirghaderi, S.R. & Sayadi, S. (2021). Comparison of Seismic Behavior of the Eccentric and Conventional Diagrid Systems. Structural Design of Tall and Special Buildings, vol. 30, no. 3, DOI: 10.1002/tal.1824.
[12] Teran-Gilmore, A., Roeslin, S., Tapia-Hernández, E. & Cuadros-Hipólito, E. (2021). Displacement-Based Design of Tall Earthquake-Resistant Diagrid Systems. Building Engineering, vol. 35, DOI: 10.1016/j.jobe.2020.102022.
[13] Song, S. & Zhang, C.H. (2020). Lateral Stiffness and Preliminary Design Methodology of Twisted Diagrid Tube Structures. Structural Design of Tall and Special Buildings, vol. 29, no. 18, DOI: 10.1002/tal.1809.
[14] Cascone, F., Faiella, D., Tomei, V. & Mele, E. (2021). A Structural Grammar Approach for the Generative Design of
Diagrid-Like Structures. Buildings, vol. 11(3), DOI: 10.3390/buildings11030090.
[15] Asgarian, B., Sadrinezhad, A. & Alanjari, P. (2010). Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis. Constructional Steel Research, vol. 66, no. 2, pp. 178-190.
[16] Ahlehagh, S. & Mirghaderi, S.R. (2020). Decoupling the Strength and Drift Criteria in Steel Moment-Resisting Frames. Structural Design of Tall and Special Buildings, vol. 29, no. 17, DOI: 10.1002/tal.1804.
[17] Vahdani, R., Gerami, M. & Razi, M. (2017). Seismic Vulnerability Assessment of Steel Moment-Resisting Frames Based on Local Damage. Earthquake and Tsunami, vol. 11(5), DOI: 10.1142/S1793431117500166.
[18] The Iranian National Building Code. (2014). Steel Structures. Issue 10, Tehran, Iran.
[19] Standard No. 2800. (2014). Iranian Code of Practice for Seismic Resistant Design of Buildings. 4th Edition, Tehran, Iran.
[20] CSI, Analysis Reference Manual for SAP2000. (2010). Berkeley, California, USA.
[21] The Iranian National Building Code. (2014). Design Loads for Buildings. Issue 6, Tehran, Iran.
[22] ASCE/SEI 41-17. (2017). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers, Reston, Virginia.
[23] FEMA P-695. (2009). Quantification of Building Seismic Performance Factors. Federal Energy Management Agency (FEMA), Redwood City, California.
[24] Pacific Earthquake Engineering Research Center (PEER), Ground Motion Database, University of California Berkeley.
[25] Kohrangi, M., Vamvatsikos, D. & Bazzurro, P. (2018). Pulse-like versus non pulse-like ground motion records:
Spectral shape comparisons and record selection strategies. Earthquake Engineering Structural Dynamics, vol. 48, no. 1, pp. 46–64.
[26] Heshmati, M., Khatami, A. & Shakib, H. (2021). FEMA P695 Methodology for Safety Margin Evaluation of Steel Moment Resisting Frames Subjected to Near‑Field and Far‑Field Records. SN Applied Sciences, vol. 3, DOI: 10.1007/s42452-021-04230-2.
[27] Ezzodin, A., Ghodrati Amiri, Gh. & Raissi Dehkordi, M. (2021). Simulation of fling step pulse of near-fault ground motion by using wavelet smoothening and improved bell-shaped function. Soil Dynamics and Earthquake Engineering, vol. 140, DOI: 10.1016/j.soildyn.2020.106462.
[28] CSI, User Guide PERFORM 3D. (2011). Nonlinear Analysis and Performance Assessment for 3D Structures”. Berkeley, California, USA.
[29] Vamvatsikos, D. & Allin Cornell, C. (2004). Applied incremental dynamic analysis. Earthquake Spectra, vol. 20, no. 2, pp. 523–553.
[30] Vamvatsikos, D. & Allin Cornell, C. (2006). Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthquake Engineering Structural Dynamics, vol. 35, no. 9, pp. 1097-1117.
[31] Porter, K., Kennedy, R. & Bachman, R. (2007). Creating fragility functions for performance-based earthquake engineering. Earthquake Spectra, vol. 23, no. 2, pp. 471–489.
[32] Mai, C., Konakli, K. & Sudret, B. (2017). Seismic fragility curves for structures using non-parametric representations. Frontiers of Structural and Civil Engineering, vol. 11, pp. 169–186.
[33] FEMA 356. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Energy Management Agency (FEMA), Reston, Virginia.