ارزیابی مدل‌های پارامتری و غیر پارامتری در پیش بینی وقایع نادر ترافیکی بر مبنای سرعت متوسط و حجم ترافیک

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه تربیت مدرس
چکیده
پیش‌­بینی متغیرهای ترافیکی یکی از ابزارهای کارآمد در مدیریت تقاضای سفر است. با استفاده از این ابزار، متغیرهای ترافیکی پیش‌­بینی شده در اختیاران کاربران و گردانندگان سیستم حمل­‌ونقل قرار می­‌گیرد تا برنامه‌­ریزی­‌های فردی و سیاست‌گذاری‌های کلی اتخاذ شوند. در این پژوهش دو متغیر ترافیکی سرعت متوسط و حجم ترافیک ساعتی، در جاده برون‌شهری کرج به چالوس به‌عنوان محوری با نوسانات زیاد متغیرهای ترافیکی، پیش‌­بینی شده است. از میان مدل­‌های متنوع پیش‌­بینی کننده، مدل ساریما به‌عنوان یک مدل پارامتری و مدل­‌های شبکه عصبی مصنوعی و ماشین بردار پشتیبان به‌عنوان مدل‌­های غیرپارامتری استفاده شده­‌اند. در فرآیند پیش‌­پردازش داده، متغیرهای اثرگذار بر سرعت متوسط و حجم ترافیک استخراج و به‌عنوان متغیرهای پیش‌­بینی کننده به مجموعه داده اضافه شده است. همچنین ازآنجاکه اطلاع داشتن از مقادیر بیشینه و کمینه سرعت متوسط و حجم ترافیک به‌عنوان وقایع نادر ترافیکی، اهمیت بیشتری به نسبت مقادیر عادی دارد، ارزیابی مدل­‌ها با تأکید بر پیش‌­بینی وقایع نادر انجام شده است. نتایج نشان می‌­دهد، برای داده آزمون، کمترین ریشه میانگین مربعات خطای پیش‌­بینی سرعت متوسط و حجم ترافیک به ترتیب با استفاده از مدل­‌های شبکه عصبی مصنوعی و ماشین بردار پشتیبان و برابر با 139 وسیله نقلیه بر ساعت و 5 کیلومتر بر ساعت حاصل شده است. کم­ترین ریشه میانگین مربعات خطا پیش‌­بینی سرعت متوسط برای چارک اول و چهارم به عنوان مقادیر نادر ترافیکی مقادیر مشاهده شده به ترتیب توسط مدل­‌های ماشین بردار پشتیبان و شبکه عصبی مصنوعی به دست آمده است. همچنین چارک اول و چهارم مقادیر مشاهده شده حجم ترافیک با مدل ماشین بردار پشتیبان دقیق­‌تر از دو مدل دیگر پیش‌­بینی شده­‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of Parametric and Non-parametric Models in Predicting Rare Traffic Events Based on Average Speed and Traffic Volume

نویسندگان English

A. Rasaizadi
S. Seyedabrishami
Tarbiat Modares University
چکیده English

One of the information needed for all planning problems and specifically transportation planning is to have accurate prediction about the future. Traffic variables prediction is one of the efficient tools in travel demand management. Using this tool and advanced traveler information systems (ATIS), the predicted traffic variables are informed to the users and transportation system operators to make plans and set policies. In this study, the average speed and traffic volume of the Karaj to Chalus suburban road with the high variation of traffic variables in the north of Iran is predicted. The Karaj to Chalous road is part of the route from Tehran as the capital of Iran to the country's northern coast. Along the Karaj to Chalous road, three parallel roads, with different lengths, connect Tehran with the cities of the north. In general, finding the pattern of non-mandatory trips is more complicated than mandatory trips. Generally, the predictive methods are divided into three groups, naïve, parametric and non-parametric methods. Among the various predictive models, the SARIMA as a parametric model and the artificial neural network and the support vector machine as nonparametric models are employed. In the data pre-processing step, the variables affecting the average speed and traffic volume are extracted and added to the dataset as predictor variables. These variables are related to time, calendar, holidays, weather, and roads blockage. Also, because of the importance of the maximum and minimum values of traffic speed and volume, as critical values and rare events, models are evaluated with emphasis on the prediction of rare events compared to normal values. The results show that, for the test data, the lowest root mean square error of predicting the average traffic speed and traffic volume are obtained using artificial neural network and support vector machine models equals 139 vehicles per hour and 5 kilometers per hour, respectively. In terms of R2 of prediction-observation plot, the performance of SARIMA for predicting the average speed and traffic volume is the same for the test dataset. In contrast the R2 of hourly traffic volume prediction is higher for the training data. The R2 of artificial neural network model and the support vector machine for traffic volume prediction is higher than traffic speed prediction. The lowest root mean square error of predicting the first and fourth quartile of the observed average traffic speed values is obtained by support vector machine models and artificial neural network, respectively. Also, predicting the first quartile and fourth quartile of the observed traffic volume values by the support vector machine model is more accurate than two other models. Using predicted traffic parameters and providing them to travelers and transportation agencies by intelligent transportation systems leads to make a balance between travel demand and travel supply in the near future which is the main aim of this study. Travelers can have a better personal plan for their future trips based on these predictions. Also, the transportation agencies are more prepared to deal with critical traffic situations and can prevent traffic congestion.

کلیدواژه‌ها English

Traffic variables prediction
Rare event prediction
Sarima
artificial neural network
Support vector machine
1. Ahmed B. The Traditional Four Steps Transportation Modeling Using a Simplified Transport Network: A Case Study of Dhaka City, Bangladesh. International Journal of Advanced Scientific Engineering and Technological Research. 2012;1(1):19-40.
2. Nagy AM, Simon V. Survey on traffic prediction in smart cities. Pervasive and Mobile Computing. 2018;50:148-63.
3. Kwak S, Geroliminis N. Travel time prediction for congested freeways with a dynamic linear model. IEEE Transactions on Intelligent Transportation Systems. 2020.
4. Akhtar M, Moridpour S. A Review of Traffic Congestion Prediction Using Artificial Intelligence. Journal of Advanced Transportation. 2021;2021.
5. Li W, Wang J, Fan R, Zhang Y, Guo Q, Siddique C, et al. Short-term traffic state prediction from latent structures: Accuracy vs. efficiency. Transportation Research Part C: Emerging Technologies. 2020;111:72-90.
6. Befekadu GK. Rare Event Simulation in a Dynamical Model Describing the Spread of Traffic Congestions in Urban Network Systems. A Collection of Papers on Chaos Theory and Its Applications: IntechOpen; 2021.
7. Lefèvre S, Sun C, Bajcsy R, Laugier C, editors. Comparison of parametric and non-parametric approaches for vehicle speed prediction. 2014 American Control Conference; 2014: IEEE.
8. Campbell JY, Thompson SB. Predicting excess stock returns out of sample: Can anything beat the historical average? The Review of Financial Studies. 2008;21(4):1509-31.
9. Zhang Y, Liu Y. Comparison of parametric and nonparametric techniques for non-peak traffic forecasting. World Academy of Science, Engineering and Technology. 2009;51(27):8-14.
10. Alghamdi T, Elgazzar K, Bayoumi M, Sharaf T, Shah S, editors. Forecasting traffic congestion using ARIMA modeling. 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC); 2019: IEEE.
11. Zhong-Da T, Shu-Jiang L, Yan-Hong W, Xiang-Dong W. Network traffic prediction based on ARIMA with Gaussian process regression compensation. Journal of Beijing University of Posts and Telecommunications. 2017;40(6):65.
12. Luo X, Niu L, Zhang S. An algorithm for traffic flow prediction based on improved SARIMA and GA. KSCE Journal of Civil Engineering. 2018;22(10):4107-15.
13. Yang X, Zou Y, Tang J, Liang J, Ijaz M. Evaluation of short-term freeway speed prediction based on periodic analysis using statistical models and machine learning models. Journal of Advanced Transportation. 2020;2020.
14. Li Z, Bi J, Li Z, editors. Passenger flow forecasting research for airport terminal based on SARIMA time series model. IOP conference series: earth and environmental science; 2017: IOP Publishing.
15. Milenković M, Švadlenka L, Melichar V, Bojović N, Avramović Z. SARIMA modelling approach for railway passenger flow forecasting. Transport. 2018;33(5):1113-20.
16. Moghimi B, Safikhani A, Kamga C, Hao W. Cycle-length prediction in actuated traffic-signal control using ARIMA model. Journal of Computing in Civil Engineering. 2018;32(2):04017083.
17. Wang J, Boukerche A. Non-parametric models with optimized training strategy for vehicles traffic flow prediction. Computer Networks. 2021;187:107791.
18. Csikós A, Viharos ZJ, Kis KB, Tettamanti T, Varga I, editors. Traffic speed prediction method for urban networks—an ANN approach. 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS); 2015: IEEE.
19. Man-Chun T, Luo-Bin F, Jian-Min X. Traffic flow prediction based on hybrid ARIMA and ANN model. China Journal of Highway and Transport. 2007;4(86).
20. Jadaan KS, Al-Fayyad M, Gammoh HF. Prediction of road traffic accidents in jordan using artificial neural network (ANN). Journal of Traffic and Logistics Engineering. 2014;2(2).
21. Yu B, Wang Y, Yao J, Wang J. A comparison of the performance of ANN and SVM for the prediction of traffic accident duration. Neural Network World. 2016;26(3):271.
22. Duan M, editor Short-time prediction of traffic flow based on PSO optimized SVM. 2018 international conference on intelligent transportation, big data & smart city (ICITBS); 2018: IEEE.
23. Xu D-w, Wang Y-d, Jia L-m, Qin Y, Dong H-h. Real-time road traffic state prediction based on ARIMA and Kalman filter. Frontiers of Information Technology & Electronic Engineering. 2017;18(2):287-302.
24. Yao B, Chen C, Cao Q, Jin L, Zhang M, Zhu H, et al. Short‐term traffic speed prediction for an urban corridor. Computer‐Aided Civil and Infrastructure Engineering. 2017;32(2):154-69.
25. Brockwell PJ, Brockwell PJ, Davis RA, Davis RA. Introduction to time series and forecasting: Springer; 2016.
26. Heriz HH, Salah HM, Abdu SBA, El Sbihi MM, Abu-Naser SS. English Alphabet Prediction Using Artificial Neural Networks. 2018.
27. Wanto A, Windarto AP, Hartama D, Parlina I. Use of binary sigmoid function and linear identity in artificial neural networks for forecasting population density. IJISTECH (International Journal of Information System & Technology). 2017;1(1):43-54.
28. Pisner DA, Schnyer DM. Support vector machine. Machine Learning: Elsevier; 2020. p. 101-21.
29. Alzahrani SI, Aljamaan IA, Al-Fakih EA. Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions. Journal of infection and public health. 2020;13(7):914-9.
30. Stock JH, Watson MW. Introduction to econometrics 3rd ed. Pearson Education; 2015.
31. Im KS, Pesaran MH, Shin Y. Testing for unit roots in heterogeneous panels. Journal of econometrics. 2003;115(1):53-74.
32. Rasaizadi, A., Ardestani, A., & Seyedabrishami, S. E. (2021). Traffic management via traffic parameters prediction by using machine learning algorithms. International Journal of Human Capital in Urban Management, 6(1), 57-68.
33. Rasaizadi, A., Seyedabrishami, S., & Saniee Abadeh, M. (2021). Short-Term Prediction of Traffic State for a Rural Road Applying Ensemble Learning Process. Journal of Advanced Transportation, 2021.
34. Rasaizadi, A., Sherafat, E., & Seyedabrishami, S. (2021). Short-term prediction of traffic state, statistical approach versus machine learning approach. Scientia Iranica.