1- Mitchell JK, Soga K,(2005). ”Fundamentals of soil behavior”, John Wiley & Sons, US, pp 325-350.
2- Bagherieh, A. R., Farpour, R., Farsijani, A. (2017). The collapse and creep beheviour of kaolin with double porosity structure. Modares Journal of Civil Engineering, 16(20), 11–20. http://mcej.modares.ac.ir/article-16-10663-fa.html
3- Memarzadeh, I., Lashkari, A. & Shourijeh, P.T. Consolidation Behavior of Structured Clayey Soils: A Case Study on Shiraz Fine Alluvial Strata. Int J Civ Eng 16, 1435–1444 (2018). https://doi.org/10.1007/s40999-017-0163-1
4- Garakani, A. A., Haeri, M., Desai, C. S., Ghafouri , M. H. S., (2019) Testing and Constitutive Modeling of Lime-Stabilized Collapsible Loess. II: Modeling and Validations, Int. J. Geomechanics, 19(4) 10.1061/(ASCE)GM.1943-5622.0001386
5- Ouria, A., Karamzadegan, S., Emami, S., “Interface properties of a cement coated geocomposite”, Construction and Building Materials, Volume 266, Part B, 2021, 121014. https://doi.org/10.1016/j.conbuildmat.2020.121014
6- Sangrey, D. A. (1972). “Naturally cemented sensitive soils.” G_eotechnique,22(1), 139–152.
7- Ouria, A., & Behboodi, T. (2017). Compressibility of Cement Treated Soft Soils. Journal of Civil and Environmental Engineering, 47.1(86), 1–9. https://ceej.tabrizu.ac.ir/article_6273.html
8- Chowdhury B, Haque A, Muhunthan B, (2014 ). “New pressure-void ratio relationship for structured soils in the virgin compression range”, Journal of Geotechnical and Geoenvironmental Engineering, 140 (8), 06014009.
9- Ouria, A. (2017). “Disturbed state concept-based constitutive model for structured soils.” International Journal of Geomechanics, 17(7) Doi:10.1061/(ASCE)GM.1943-5622.0000883.
10- Shogaki, T., and Kaneko, M. (1994), Effects of Sample Disturbance on Strength and Consolidation Parameters of Soft Clay, Soils and Foundations, 34(3) 1-10.
11- Rouainia, M., and Muir Wood, D. (2000). “A kinematic hardening constitutive model for natural clays with loss of structure.” Geotechnique, 50(2), 153–164
12- Yang, C., Liu, X., Yang, C., and Carter, J. P. (2015). “Constitutive modelling of Otaniemi soft clay in both natural and reconstituted states.” Comput. Geotech, , 70, 83–95.
13- Liu, M. D., and Carter, J. P. (2000a). “Modelling the destructuring of soils during virgin compression.” Geotechnique, 50(4), 479–483.
14- Liu, M. D., Carter, J. P., and Desai, C. S. (2003). “Modeling compression behavior of structured geomaterials.” Int. J. Geomech., 10.1061 /(ASCE)1532-3641(2003)3:2(191), 191–204
15- Horpibulsuk, S., Suddeepong, A., Chinkulkijniwat, A., and Liu, M. D. (2012). “Strength and compressibility of lightweight cemented clays.” Appl. Clay Sci., 69, 11–21.
16- Horpibulsuk, S., Rachan, R., Suddeepong, A., Liu, M. D., and Du, Y. J. (2013). “Compressibility of lightweight cemented clays.” Eng. Geol., 159, 59–66.
17- Zhu, E. Y., and Yao, Y. P. (2015). “Structured UH model for clays.”Transp. Geotech., 3, 68–79.
18- Lagioia, R., and Nova, R. (1995). “An experimental and theoretical study of the behaviour of a
calcarenite in triaxial compression.” Geotechnique, 45(4), 633–648
19- Ouria, A., Ranjbarnia, M., and Vaezipour, D. (2018). “A Failure Criterion for Weak Cemented Soils.” Journal of Civil and Environmental Engineering, 48.3(92), 13–21.
20- Casagrande, A. 1936. Determination of preconsolidation load and its practical significance. In Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass., 22–26 June 1936.pp. 60–64.
21- Pacheco Silva, F. 1970. A new graphical construction for determination of the pre-consolidation stress of a soil sample. In Proceedings of the 4th Brazilian Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil. pp. 225–232.
22- Burland, J.B. 1990. On the compressibility and shear strength of natural clays. Géotechnique, 40(3): 329–378. doi:10.1680/geot.1990.40.3.329
23- Jacobsen, H.M. 1992. Bestemmelse af forbelastningstryk I laboratoriet. NordiskeGeotecknikermde NGM-92, Aalborg, 28–30 May 1992. pp. 455–460
24- Boone, S.J. 2010. A critical reappraisal of “preconsolidation pressure” interpretations using the oedometer test. Canadian Geotechnical Journal, 47(3): 281–296. doi:10.1139/T09-093.
25- Butterfield, R. 1979. A natural compression law for soils (an advance on e-logp). Géotechnique, 29(4): 469–480. doi:10.1680/geot.1979.29.4.469.
26- Oikawa, H. 1987. Compression curve of soft soils. Soils and Foundations, 27(3):99–104. doi:10.3208/sandf1972.27.3_99.
27- Jose, B.T., Sridharan, A., and Abraham, B.M. 1989. Log-log method for determination of preconsolidation pressure. Geotechnical Testing Journal, 12(3): 230–237. doi:10.1520/GTJ10974J
28- Onitsuka, K., Hong, Z., Hara, Y., and Yoshitake, S. 1995. Interpretation of oedometer test data for natural clays. Soils and Foundations, 35(3): 61–70. doi:10. 3208/sandf.35.61.
29- Bjerrum, L. 1967. Engineering geology of Norwegian normally-consolidatedmarine clays as related to settlements of buildings. Géotechnique, 17(2): 83–118. doi:10.1680/geot.1967.17.2.83.
30- Becker, D.E., Crooks, J.H.A., Been, K., and Jefferies, M.G. 1987. Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal, 24(4): 549–564. doi:10.1139/t87-070.
31- Wang, L.B., and Frost, J.D. 2004. Dissipated strain energy method for determining preconsolidation pressure. Canadian Geotechnical Journal, 41(4): 760–768. doi:10.1139/t04-013.
32- Umar, M., & Sadrekarimi, A. (2016). Accuracy of determining pre-consolidation pressure from laboratory tests. Canadian Geotechnical Journal, 54(3), 441–450. https://doi.org/10.1139/cgj-2016-0203
33- Desai, C. S. (2001). Mechanics of materials and interfaces: The disturbed state concept, CRC, Boca Raton, FL.
34- Desai, C. S., and Toth, J. (1996). “Disturbed state constitutive modeling based on stress-strain and non-destructive behavior.” Int. J. Solids Struct., 33(11), 1619–1650.
35- Desai, C. S., and Wang, Z. C. (2003). “Disturbed state model for porous saturated materials.” Int. J. Geomech., 10.1061/(ASCE)1532 -3641(2003)3:2(260), 260–264.
36- Desai, C. S. (2016). “Disturbed state concept as unified constitutive modeling approach.” J. Rock Mech. Geotech. Eng., 8(3), 277–293
37- Desai, C. S. (1974). “A consistent finite element technique for work- softening behavior.” Proc., Int. Conf. on Computational Methods in Nonlinear Mechanics, J. T. Oden, et al., eds., Texas Institute for Computational Mechanics, Austin, TX.
38- Ouria, A., Desai, C. S., and Toufigh, V. (2015). “Disturbed state concept-based solution for consolidation of plastic clays under cyclic loading.” International Journal of Geomechanics, 15(1). doi: 10.1061/(ASCE)GM.1943-5622.0000336
39- Farsijani, A., and Ouria, A. A Compression Model for Unsaturated Collapsible soils, (2021) Accepted for publication, Modares Journal of Civil Engineering.
40- Farsijani, A., and Ouria, A. (2021) Constitutive Modeling the Stress-Strain and Failure Behavior of Structured Soils Based on HISS Model. Modares Journal of Civil Engineering, 21(4), 231–250. http://mcej.modares.ac.ir/article-16-52042-en.html
41- Kucharavy, D., & De Guio, R. (2011). Application of S-shaped curves. Procedia Engineering, 9, 559–572. https://doi.org/https://doi.org/10.1016/j.proeng.2011.03.142
42- Tavenas, F., Jean, P., Leblond, P., and Leroueil, S. (1983). “The permeability of natural soft clays. Part II: Permeability characteristics.” Can. Geotech. J., 20(4), 645–660
43- Yong, R. N., and Nagaraj, T. S. (1977). “Investigation of fabric and compressibility of a sensitive clay.” Proc., Int. Symp. on Soft Clay, Asian Institute of Technology, Bangkok, Thailand, 327–333.2
44- Tanaka, H., and Locat, J. (1999). “A microstructural investigation of Osaka Bay clay: The impact of microfossils on its mechanical behaviour.” Can. Geotech. J., 36(3), 493–508011.03.142
45- Medero; G.M., Schnaid; F; Gehling., "Oedometer Behavior of an Artificial Cemented Highly Collapsible Soil", J. Geotech. Geoenviron. Eng, 2009, 135:840-843.